
BlueFi: Bluetooth over WiFi
Hsun-Wei Cho and Kang G. Shin

The University of Michigan

ABSTRACT
Bluetooth and WiFi are the two dominant technologies enabling
the communication of mobile and IoT devices. Built with specific
design goals and principles, they are vastly different, each using its
own hardware and software. Thus, they are not interoperable and
require different hardware.

One may, therefore, ask a simple, yet seemingly impossible ques-
tion: “Can we transmit Bluetooth packets on commercial off-the-
shelf (COTS) WiFi hardware?” We answer this question positively
by designing, implementing and demonstrating a novel system
called BlueFi. It can readily run on existing, widely-deployed WiFi
devices without modifying NIC firmware/hardware. BlueFi works
by reversing the signal processing of WiFi hardware and finds spe-
cial 802.11n packets that are decodable by unmodified Bluetooth
devices. With BlueFi, every 802.11n device can be used simultane-
ously as a Bluetooth device, which instantly increases the coverage
of Bluetooth, thanks to the omnipresence of WiFi devices. BlueFi
is particularly useful for WiFi-only devices or environments.

We implement and evaluate BlueFi on devices with widely-
adopted WiFi chips. We also construct two prevalent end-to-end
apps — Bluetooth beacon and audio — to showcase the practical
use of BlueFi. The former allows ordinary APs to send location
beacons; the latter enables WiFi chips to stream Bluetooth audio in
real time.

CCS CONCEPTS
• Networks→ Wireless access networks.

KEYWORDS
Cross-Technology Communication, Bluetooth, WiFi

1 INTRODUCTION
The future of wireless communication is nothing short of hetero-
geneous technologies, as each technology comes with its own set
of strengths and weaknesses. Tailored to its specific communica-
tion paradigm, each wireless standard/technology typically uses
vastly different bandwidth, modulation/coding, and medium access
control. This is bad news for supporting multiple heterogeneous
wireless standards as each technology requires dedicated hardware,
deployment and maintenance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472920

Bluetooth plays a key role in providing valuable functions such
as location and automation services in business, industrial or pub-
lic settings, such as retailers, buildings and airports. The number
of Bluetooth location-service devices is projected to grow at an
annual rate of 43% and reach 431M by 2023 [1]. Bluetooth is also
the dominant technology used for personal audio streaming. 1.1B
Bluetooth audio streaming devices were shipped in 2019 alone and
the figure is expected to grow 7% per year [2].

On the other hand, more than 30B WiFi devices have already
been shipped over the recent years, of which more than 13B de-
vices are in active use [3]. Many of these devices are Access Points
(APs) already deployed in the environments, providing pervasive
coverage of WiFi signals. Cisco estimates that the number of WiFi
hotspots in public alone will reach 628M by 2023 [4]. If WiFi hard-
ware can be concurrently re-purposed as Bluetooth hardware, it
will significantly increase the coverage of Bluetooth signals and
provide useful Bluetooth functions in environments where only
WiFi hardware is present. For example, to provide Internet con-
nectivity for billions of devices, WiFi APs have been ubiquitously
deployed, but almost none of them comes with Bluetooth hardware
or Bluetooth connectivity. Dedicated Bluetooth infrastructures are
also much less prevalent than WiFi infrastructures. Some desktops
or low-cost mobile devices are only equipped with WiFi chips. Most
USB WiFi NICs do not have Bluetooth functions. If WiFi–Bluetooth
communication is possible, every AP can also function as a Blue-
tooth device, such as a Bluetooth beacon. Alternatively, users can
use Bluetooth peripherals, such as Bluetooth headphones, with
WiFi-only devices. With WiFi-Bluetooth communication and by
leveraging the Broadcast Audio feature in the latest Bluetooth stan-
dard, it is even possible to use WiFi APs to broadcast audio streams
to nearby Bluetooth headphones and provide interactive and im-
mersive experiences in venues such as museums. Finally, thanks to
the connectivity of WiFi devices, these emulated BT functions can
be controlled remotely, even from cloud servers, which nicely fits
the IoT paradigm.

In this paper, we present BlueFi, a novel system that enables
the transmission of legitimate BT signals using 802.11n-compliant
hardware with simple driver updates. BlueFi requires no modi-
fication whatsoever to the hardware and firmware of Bluetooth
receivers and of WiFi chips. Since newer WiFi standards, such
as 802.11ac and 802.11ax, mandate the compliant hardware to be
backward-compatible with 802.11n, BlueFi can run on 802.11ac
and 802.11ax hardware as well. BlueFi carefully compensates and
reverses the operations of WiFi hardware, and crafts special WiFi
packets. These special packets, sent by our updated WiFi drivers,
result in 802.11n-compliant waveforms which are also decodable
by Bluetooth devices. Since it leverages the overall WiFi standard
and vendor-agnostic hardware functions, BlueFi can run on any
802.11n-compliant chips, instead of specific chips from particular
manufacturers.

https://doi.org/10.1145/3452296.3472920

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

However, transmitting BT signals using WiFi hardware is very
challenging since the two wireless standards are very different from
each other. At the highest level, Bluetooth encodes the information
in the time domain whereas WiFi (specifically, 802.11a/g/n/ac/ax)
uses OFDM and encodes the information in the frequency domain.
Furthermore, most of the bit manipulation and signal processing
will be automatically applied by WiFi hardware, and they cannot
be bypassed. These operations will appear as signal impairments
when a Bluetooth waveform is transmitted. We identify four major
sources of impairments introduced by WiFi hardware.

I1. Cyclic Prefix (CP) Insertion: OFDM systems use CP to
overcome inter-symbol interference (ISI). However, a small portion
of the Bluetooth waveform we want to transmit will be overridden
by this CP insertion, which is a copy of the tail of an OFDM sym-
bol. Specifically, one WiFi symbol corresponds to approximately
4 Bluetooth bits. Therefore, part of the IQ waveform in bit 3 will
overwrite the IQ waveform in bit 0. We find a Bluetooth receiver
unable to pick up the signal without carefully compensating for
the CP insertion process.

I2. QAMModulation: OFDM encodes the information in the
frequency domain before applying IFFT to generate the time-domain
signal. Although we can use FFT to get the frequency-domain equiv-
alent of a Bluetooth waveform, we cannot perfectly reconstruct the
frequency-domain signal since a WiFi transmitter can only gener-
ate constellations with a very coarse resolution in the frequency
domain. For example, using 64 QAM, samples at each subcarrier
in the frequency domain must be selected from one of the 64 con-
stellations. The difference between the selected constellation and
the ideal value causes impairments in the frequency domain and
subsequently in the time domain. Selecting the optimal constel-
lations for the best Bluetooth performance can be formulated as
an integer-programming (IP) problem and hence is NP-Complete.
Solving the IP problem by exhaustive search is nearly impossible
for this problem size.

I3. Pilots and Nulls: Not all subcarriers in one OFDM symbol
are used for data transmission. Four of the subcarriers are for pi-
lot signals and they are, on average, of higher magnitudes than
those for data transmission. In contrast, some subcarriers, such
as subcarrier 0, must be 0. These pilots and nulls will corrupt the
transmission waveform if they are too close to the center frequency
of a Bluetooth channel.

I4. FEC Coder: WiFi uses forward error correction (FEC) to
combat communication errors. Since FEC encoders add redundancy
to the bit-stream, some bits are related at the encoder’s output.
So, the encoder cannot generate arbitrary sequences. BlueFi must
thus decide which bits are more important than others and find
an input sequence that minimizes the important bits’ hamming
distance between the target output sequence and the reconstructed
output sequence.

We have designed BlueFi to overcome the above impairments,
and tested it on real, widely-adopted WiFi chips to find the trans-
mitted signals are correctly decoded by conventional, unmodified
Bluetooth devices. Although these impairments degrade the signal
quality, the received signal strength is actually higher since WiFi
is allowed to transmit at high power. We have also evaluated the
effect of each impairment.

BlueFi enables tremendous opportunities for real-world appli-
cations. For example, BlueFi makes it possible to send Bluetooth
beacons usingWiFi infrastructures that have already been deployed
almost everywhere. This will be very useful, especially in corporate,
business or public environments, to provide useful features, such as
way-finding, navigation, proximity marketing and more, all besides
WiFi connectivity, simultaneously. Because of such market needs,
various solutions have already been proposed. For example, the
Cisco Virtual Beacon [5] adds the Bluetooth beacon functionality
to existing Cisco APs. However, the Cisco solution requires a ded-
icated, purpose-built hardware to be installed on every AP and
hence incurs hardware and deployment costs. (The word virtual
refers to the fact that it is a networked solution and allows remote
management and updates.) In contrast, we can implement such
functionality readily on existing WiFi APs with BlueFi and no
additional hardware is needed. In a sense, BlueFi is a true virtual
solution that enables Bluetooth purely at the software level. To
demonstrate this, we have built an end-to-end example in which
an 802.11n-compliant AP is transformed into a Bluetooth beacon.

BlueFi can work with general and real-time Bluetooth apps
as well. In particular, we are able to stream real-time audio with
A2DP (Advanced Audio Distribution Profile) using WiFi chips. We
envision that BlueFi will help eliminate the need for dedicated
Bluetooth or combo chips in future devices, saving costs and the
precious board-space, which is very important for small devices
such as smart phones or watches. Alternatively, BlueFi can help
users use Bluetooth headphones with laptops or desktops with old
or no Bluetooth hardware.

2 SYSTEM DESIGN
2.1 Primers
We first review the PHY specifications of Bluetooth and 802.11n.
By comparing these technologies, we explore the opportunities of
leveraging the functionalities of existing WiFi hardware to transmit
Bluetooth signals. A list of acronyms is compiled and provided in
Appendix A.4.

2.1.1 Bluetooth. Bluetooth uses GFSK (Gaussian Frequency-Shift
Keying), which is frequency-shift keying with a Gaussian filter ap-
plied to the input bit-stream to reduce spectral leakage. For FSK, the
output has a positive frequency deviation for bit “1” and a negative
frequency deviation for bit “0”. Since phases can be obtained by
integrating frequencies, sending 1’s results in phases with a positive
slope and sending 0’s results in phases with a negative slope. In
addition, since no information is encoded in the amplitude of the
time-domain waveform, a Bluetooth packet can be fully charac-
terized by only the waveform’s phases. Bluetooth devices should
support the basic 1Mbps data rate, so the bit duration in Bluetooth
is 1000ns.

For Bluetooth beacons, advertisement packets are broadcast on
2402, 2426 or 2480 MHz and frequency hopping is not required for
beacon operation. In fact, it is the receiver’s responsibility to scan
all 3 advertisement channels and the transmitter can transmit at
1, 2 or 3 channels [6]. In contrast, frequency hopping is critical to
the operation of connected devices and packets are transmitted in
time slots. Each time slot is 625µs long and a device can only start

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Scrambler
FEC

Coder

Bit

Interleaving
QAM

CP

Insertion
IFFTBitstream

Carrier

Antenna

���[�]

�[�] [!]

" � = ∠�[�]

IQ Waveform

Figure 1: Block diagram of 802.11n transmitters

transmission in every other time slot. Once the transmission starts,
a single packet can occupy multiple (3 or 5) slots and the frequency
stays the same during a multi-slot transmission.

2.1.2 802.11n. Officially known as High Throughput (HT) PHY in
the 802.11 standard [7], 802.11n inherited the same OFDM structure
as 802.11a and 802.11g. Fig. 1 shows the block diagram of a typical
802.11n transmitter. The bit-stream, sent from the MAC layer, is
fed to a scrambler to remove long-running 1’s or 0’s. The scrambler
XORs the input bit-stream with a pseudorandom sequence gen-
erated by shift registers. To enhance robustness, a forward error
correction (FEC) encoder then adds redundancy to the scrambled
bit-stream. Different code rates can be selected and are achieved
by skipping the transmission of some encoded bits (“puncturing”).
Instead of assigning adjacent bits to the same or nearby subcarriers,
an inter-leaver enhances robustness further by evenly spreading
nearby bits to subcarriers that are far apart. In the mandatory
20MHz mode, 52 out of 64 subcarriers are used for data transmis-
sion. Bits are grouped and placed on these subcarriers with BPSK,
QPSK, 16-QAM or 64-QAM mapping. Subcarriers are separated by
20/64=0.3125MHz, and subcarriers -21,-7,7 and 21 are used for pilot
tones. Subcarrier 0 is always 0. The samples on these 64 subcarriers
are converted to a 64-sample-long time-domain signal via IFFT. The
last 16 time-domain samples are copied and inserted into the front
of the 64 samples. The inserted portion of the waveform is known
as the cyclic prefix (CP). These 80 samples constitute one 802.11n
OFDM symbol. The data portion of an 802.11n waveform (normally)
consists of multiple OFDM symbols. To further reduce the spectral
leakage caused by the discontinuity between OFDM symbols, the
standard suggests application of windowing in the time domain.
For two consecutive symbols, windowing can be achieved by ap-
pending the first symbol with the first sample of the IFFT results
and then setting the first sample of the second symbol to the av-
erage between these two values. Sixteen 0’s are inserted into the
front of MAC layer bit-streams so that the receiver can determine
the scrambler seed the transmitter is using. The data portion is ap-
pended to an 802.11n preamble, which contains various parameters
used by the transmitter and signals for synchronization and CFO
(carrier frequency offset) correction. We used the “Mixed Format”
preamble since it is mandatory in 802.11n.

802.11n includes several key features. For BlueFi, the most im-
portant is the short guard interval (SGI), the only reason why
BlueFi requires 802.11n hardware instead of 802.11g. With SGI,
the length of CP is reduced from 16 samples (800ns) to 8 samples
(400ns), and hence less impairment is introduced by the insertion
of CP. SGI directly increases throughput by more than 10%, and
therefore is implemented on all devices from all major vendors even

though it is an optional feature. Any 802.11n NIC or router with an
advertised speed of 150, 300, 450 or 600Mbps has the SGI feature.

Frame aggregation is a mandatory feature in 802.11n. Although
the maximum length of a single MAC layer payload (MPDU) is 2,304
bytes, the PHY payload (PSDU) can be as long as 65,535 bytes. The
802.11n-compliant NIC’s ability to transmit huge packets enables
BlueFi to generate a very long waveform if needed. Supporting
multiple antennas is a major focus of 802.11n, but it is an optional
feature. Therefore, all devices should support using a single spatial
stream.

2.2 Overview and Methodology of BlueFi
BlueFi starts with a simple principle: As long as the IQ waveforms
generated by aWiFi chip are close enough to those generated by a Blue-
tooth transmitter, Bluetooth devices will be able to correctly receive
the signals. Therefore, given a synthesized Bluetooth IQ waveform,
we aim to find a corresponding WiFi bit-stream so that when it is
fed into an 802.11n transmitter, the generated IQ waveform will be
as close to the Bluetooth IQ waveform as possible. Finding the cor-
responding bit-stream is somewhat similar to simply decoding an
802.11n packet received from the radio. However, the former differs
from the latter in that how “close” the reconstructed IQ waveform
is to the target Bluetooth IQ waveform should be determined by
the decoding process of a Bluetooth receiver, and a small signal
deviation, from the WiFi hardware’s perspective, can completely
disrupt the decoding process of a Bluetooth receiver.

Therefore, we use the following methodology: just like decoding
802.11n packets, BlueFi tries to reverse the operation of each block
in the transmitter one-by-one. However, the results of the reverse
operation of each block are selected based on how close they can
reconstruct the IQ waveform from a Bluetooth receiver’s perspective.

2.3 Construction of IQ Waveform
For simplicity, we assume Bluetooth’s GFSK bits, including the
entire packet from the preamble to the CRC, are fed into BlueFi.
We also assume the payload is properly scrambled with a correct
seed. We have built a tool for converting Bluetooth payload to GFSK
bits, which can also be done by other software tools. We construct
the frequency signal by converting 1’s and 0’s with respective
frequency deviations. Since typical WiFi hardware generates the
IQ signal at the sampling rate of 20MHz, each 1 or 0 corresponds
to 20 samples of the frequency signal. We also insert 0’s to the
front and to the back of the frequency signal since we observed
such a pattern on commercial Bluetooth chips. We then convert the
frequency signal to its phase signal by accumulating the frequency
signal. Since the center frequency at which we wish to transmit

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

the Bluetooth packet may not be exactly the same as one of the
WiFi channels, we modulate the phase signal (sample-wise adding
linearly increasing phases) so that the output is the phase signal
with respect to the center of a WiFi channel. This modulating
operation must be applied before CP insertion since these two
operations are not commutative for phase signals. We denote this
phase signal as θ [n].

2.4 CP Insertion
This process is illustrated with phase signals as we can always
convert a phase signal θ [n] to its corresponding IQ waveform of
ei ·θ [n]. The input of the CP insertion block can be mapped 1-to-1
to the output, and vice versa. Therefore, instead of seeking an input
that will be mapped to the best-fitting IQ waveform, we first find
an output IQ waveform θ̂ [n] that can be: (1) received by Bluetooth
devices, and (2) generated by the CP insertion block.

The output of the CP insertion block always shows the first 8
samples being identical to the last 8 samples in every 72 samples.
Therefore, the most basic waveform that satisfies (2) can be gener-
ated by copying the first 8 samples to the last 8 samples in every
72 samples. The CP insertion process technically copies the last
8 samples from the last 64 samples and inserts them to the front.
However, since we have complete freedom in designing the last 64
samples, they can be generated in a way the last 8 samples appear
to have been overwritten by the CP waveform inserted at the front.

Symbol 1CP

(1) Insert CP

(2) Extend 1 sample Symbol 2CP

(3) Average overlapped samples

Figure 2: CP insertion and OFDM symbol windowing

Although the waveform of this simple method has shown ac-
ceptable performance in our simulations and when transmitted
by USRP, it shows a very poor performance when transmitted by
real WiFi chips and some Bluetooth receivers cannot pick up any
signal at all. By transmitting various IQ waveforms with USRP
and analyzing the responses of Bluetooth receivers, we found that
this has something to do with windowing applied to each OFDM
symbol, which is recommended by the standard to be implemented,
dated all the way back to 802.11a, to reduce spectral leakage. The
operation of OFDM windowing is illustrated in Fig. 2. According
to the standard, the windowing works by extending each OFDM
symbol by 1 sample (which is copied from the sample immediately
following the CP) and then averaging the overlapped samples in
the time domain. Since adding two phase samples in the time do-
main creates an erratic phase, the carefully-designed phase signal
is corrupted in 1 of every 72 samples (on top of the CP corruption).
We found this corruption alone enough to make the difference of
reception/no reception on some devices. Therefore, we must con-
sider one additional constraint, which can be summarized as the
continuity constraint: for each OFDM symbol, the last few samples

along with the extended sample must appear continuous with the
first few samples in the next OFDM symbol.

�[]:

!� :

CP

Figure 3: Constructing θ̂ [n] from θ [n] for every symbol

We found a way to construct an IQ waveform (whose phase is
θ̂ [n]) that satisfies all these constraints. The process is illustrated
in Fig. 3. Mathematically,

θ̂ [N + n] =

θ [N + n], 0 ≤ n ≤ 4
θ [N + n + 64], 5 ≤ n ≤ 8
θ [N + n], 9 ≤ n ≤ 63

θ [N + n − 64] = θ̂ [N + n − 64], 64 ≤ n ≤ 68

θ [N + n] = θ̂ [N + n − 64], 69 ≤ n ≤ 71

where N = 0, 72, 144, · · · .
Note that the CP (0 ≤ n ≤ 7) is exactly the same as the tail (64 ≤

n ≤ 71). Also, during the windowing operation, each OFDM symbol
is extended by one sample θ̂ [N +72] = θ̂ [N +8]. Since θ̂ [N +8] is set
to the first sample in the next symbol, θ [N +72], the windowing has
no effect on thewaveform. (0.5·θ [N+72]+0.5·θ̂ [N+72] = θ [N+72].)

Since the CP insertion cannot be turned off in commercial chips,
signal degradation is unavoidable. However, by designing the wave-
form this way, the signal degradation is spread out between the first
and the last Bluetooth bits in every WiFi OFDM symbol. For these
two bits, the degradation is less than 250ns, which is shorter than
the bit duration of 1000ns. Furthermore, this short-term degrada-
tion will mostly appear as a high-frequency (1/250ns=4MHz) noise
and is likely to be attenuated/removed by the band-pass filter on a
Bluetooth receiver. The input, ϕ[n], that should be sent to the CP
insertion block can be calculated by removing CPs in θ̂ [n].
2.5 QAM
The CP insertion block is immediately preceded by IFFT and QAM
generator. Therefore, BlueFi first applies FFT to the reconstructed
input to the CP block to obtain the frequency-domain samples that
the QAM generator should generate.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Four possible modulation schemes (BPSK, QPSK, 16-QAM and
64-QAM) can be used in 802.11n to generate frequency-domain
samples and a higher-order modulation scheme corresponds to a
higher data rate. A higher-ordermodulation hasmore constellations
and hence comparatively higher resolution in the frequency domain.
However, even with 64-QAM, the resolution (8 levels or 3 bits in
either the real or imaginary part) is very limited, so we must select
each constellation carefully to minimize the error of quantizing the
real or imaginary part to one of the 8 levels.

Owing to this limitation, it is hard to design an end-to-end algo-
rithm that optimizes the reception performance. Specifically, the
restriction of input assuming discrete values can be treated as an
integer constraint. The reception performance can be measured by
how close the phase of the reconstructed time-domain signal is to
the original phase signal. The problem can thus be formulated as
an integer-programming (IP) problem. Note that there is no simple
formula relating the frequency-domain samples to the phases in
the time domain. Obviously, an exact solution can be obtained by
exhaustive search or branch-and-bound. However, the complexity
of exhaustive search is 6452 = 2312 since we can control the samples
on 52 frequencies (52 subcarriers for data in 802.11n). Even if we
try to only optimize with samples at 8 subcarriers (corresponding
to a bandwidth of 0.3125 · 8=2.5MHz), the complexity is 648 = 248.
Both are intractable on almost all computing platforms.

Therefore, BlueFi uses relaxation, a common practice for ap-
proximating the solution of an IP problem. In addition, we try
to find the best fit for the time-domain waveform instead of the
phase of this waveform since some analytical results can be de-
rived. Suppose for a time-domain waveform x[n], we want to find a
least-square fit x̂[n] with the restriction that its frequency-domain
counterpart, X̂ [f], only assumes discrete values. (That is, X̂ [f] ∈
{a + bi | a ∈ {±1,±3,±5,±7},b ∈ {±1,±3,±5,±7}}.) Since x̂[n]
is the least-square fit,

∑
n |x[n] − x̂[n]|2 is minimized. Let X [f] =

FFT (x[n]) and let y[n] = x[n] − x̂[n], then by Parseval’s Theorem,∑
n |x[n] − x̂[n]|2 =

∑
n (y[n])

2 =
∑
f (Y [f])

2 =
∑
f |X [f] − X̂ [f]|2.

Therefore, minimizing the time-domain residue is equivalent to
minimizing the frequency-domain residue.

For any given X [f], if we set X̂ [f] to the constellation with the
shortest Euclidean distance, then the objective function is mini-
mized. Since only the phase of the time-domain waveform matters
to a Bluetooth receiver, a scale factor A can be applied between the
time-domain reference and the phase: x[n] = A · ei ·ϕ[n]. We set the
scale factor to 1

5 . This value is chosen such that if the energy of a
Bluetooth waveform within one OFDM symbol is mainly concen-
trated on two subcarriers, each will have a magnitude of around 32
(=64/2) units, which is close to 35 (=7 · 5). We tested using dynamic
scale factors that further optimize the residue. The performance
difference is negligible but the complexity is significantly higher as
finding an optimal scale factor is still an IP problem. The process
of selecting X̂ [f] is illustrated in Fig. 4.

2.6 Pilots and Nulls
Not all subcarriers are modulated by the incoming data. Pilot subcar-
riers are modulated by known sequences whereas null subcarriers
are always 0’s. Since we cannot control these pilots and nulls, we
solve the problem by frequency planning, leveraging the fact that

-7 -5 -3 -1 1 3 5 7

7

5

3

1

-1

-3

-5

-7

I

Q � 0 � 0

� 1 � 1

� ! : FFT of GFSK Symbols

 � ! : Closest WiFi QAM Symbol

WiFi Symbols (64-QAM)

Figure 4: Selecting X̂ [f] from X [f]. X [f] = FFT (x[n]). A scale
factor A is applied (x[n] = A · ei ·ϕ[n]) so that X [f] is appropri-
ately scaled w.r.t. origin.

we can switch WiFi channels and there are large overlaps between
WiFi channels. For example, suppose we want to transmit on Blue-
tooth channel 38 (2426MHz), then this frequency is covered byWiFi
channels 2, 3, 4 and 5, and corresponds to subcarriers 28.8, 12.8, -3.2
and -19.2, respectively. We can calculate its distance to any pilots or
nulls and select the channel to keep the Bluetooth channel farthest
away from pilots or nulls. In this example, we should use WiFi
channel 3. Using channel 3, the closest pilot is 1.8125 (=5.8*0.3125)
MHz away, which is significantly larger than half the bandwidth of
Bluetooth signals.

2.7 FEC Coder
The FEC encoder adds redundancy to the bit-stream. Because of the
redundancy in its output, an FEC encoder cannot generate arbitrary
sequences. To reverse the operation of the encoder, we must build
a decoder. We focus on convolutional codes since they are manda-
tory in 802.11n (as opposed to the optional LDPC codes). An FEC
encoder can also be viewed as a decompressor whereas a decoder
can be viewed as a lossy compressor. Consequently, when we try
to reconstruct an output sequence from decoded bits, some of the
bits will be different from the original sequence since information
is lost when decoding the original sequence.

Convolutional codes can be optimally decoded by the Viterbi
algorithm [8, 9]. Since we are not dealing with over-the-air signals
that contain noise, we used hard decoding. The Viterbi algorithm
uses dynamic programming to find the input bits corresponding to
a sequence that has the least hamming distance (Euclidean distance
for soft decoding) to the received sequence. For this decoder, we

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

use the code rate of 5/6 as it has the minimal information loss in
the decoding process.

In the conventional Viterbi algorithm, every bit-flip (except for
the flip at punctured bits) has an equal weight and the algorithm
finds an optimal survival path that minimizes the total weight.
However, since Bluetooth signals only occupy part of the WiFi
spectrum, bits on subcarriers corresponding to the main Bluetooth
spectrum should have as few bit-flips as possible whereas the bit-
flips on other subcarriers do not really matter. In addition, since
bits are interleaved before being mapped to subcarriers, there will
be no long runs of bits mapped to the same or nearby subcarriers
since adjacent bits are mapped to subcarriers that are far apart.
Consequently, it is possible to modify the Viterbi algorithm to
further minimize the flips of bits that matter to Bluetooth reception.
Specifically, we can assign higher weights to those important bits
and the Viterbi algorithm will then find an optimal solution to
reduce bit-flips. For example, in Table 1, we calculated the location
the first few bits in an OFDM symbol will be mapped to. Assuming
subcarriers 9 to 16 correspond to the main Bluetooth spectrum,
we then assign the highest weight to bits on those subcarriers; a
medium weight to those on 4 subcarriers immediately adjacent to
subcarriers 9 to 16 on each side. The absolute value of these weights
is not critical since the goal is to assign the priority of each bit. For
example, the highest weight means that those bits will only flip if
there is no alternative.

For apps that require real-time packet generation, we further sim-
plify the decoding algorithm to significantly lower the complexity
while guaranteeing no important bits to flip. For a real-time decoder,
we use the code rate of 2/3 since it has the highest compression ratio,
and hence we can reduce the length of the input bits required for an
output sequence of given length. We also make several observations
as follows. The bit inter-leaver in WiFi has an internal period of
13 and the same bit location in different cycles corresponds to the
same or nearby subcarriers. So, important bits always appear in the
same region in each cycle. We also found that the polynomials for
the convolutional coder used in WiFi are chosen in such a way that
we can design an algorithm to guarantee that at most 1/3 of bits
will be flipped when we compare an arbitrary sequence with its
reconstruction after decoding and encoding it with the code rate
of 2/3. Specifically, we divide the original sequence into groups of
39 bits. For the first 13 bits, we pre-generate a lookup table of all
possible 12-bit candidates that result in a given 9-bit pattern from
bit 5 to 13. Because of the well-designed WiFi codebook, any 9-bit
pattern has, and only has, eight 12-bit candidates and their first
3 bits are distinct. Note that in the normal process of continuous
encoding, bit 0 to 13 are generated by feeding 9 bits into an encoder.
We keep track of the last 3 bits of the decoded sequence we have
so far (or use zeros for initialization). We select the candidate that
has the same first 3 bits as these 3 bits and the remaining 9 bits
are the decoded sequence for bit 0 to 13. These 12 bits together
guarantee that bit 5 to 13 of the reconstructed sequence will not
flip while the first 3 bits ensure that the solution for bit 0 to 13 is
compatible with the sequence decoded in the last round. We use
similar processes to decode bits 14–25 and bits 26–38. This solution
guarantees that, after reconstruction/encoding, 2/3 of bits will not
flip and bit-flips will only occur near the front for each 13-bit cycle.
Using this algorithm, bit-flips can only happen on subcarriers -28 to

-8, and hence we can use it for generating Bluetooth packets with
a positive frequency shift, and it guarantees that important bits
will never flip. For negative frequency shifts, we devise a similar
algorithm so that bit-flips can only occur on subcarriers 8 to 28.

Table 1: Weight assignment for the Viterbi algorithm.

Bit Mapped Location Wt. Bit Mapped Location Wt.
0 Subcarrier -28, bit 5 1 9 Subcarrier 12, bit 5 1000
1 Subcarrier -24, bit 3 1 10 Subcarrier 16, bit 3 1000

.

.

. 11 Subcarrier 20, bit 4 100
7 Subcarrier 3, bit 3 1 12 Subcarrier 25, bit 5 1

8 Subcarrier 8, bit 4 100
.
.
.

2.8 Scrambler
The feasibility of our solution depends on whether the mapping
from the bit-stream to the IQ waveform is deterministic. The only
operation in theWiFi Tx chain that might not be deterministic is the
scrambling of bits as the standard suggests use of a “pseudorandom
nonzero initial state.” For testing and certification, however, the
seed (i.e., the initial state of the scrambler) can usually be set to a
constant by drivers, although public information on how to do it is
very limited and not documented well. The datasheet and register
map of almost allWiFi chips are not available without signing NDAs.
We found that major vendors, such as Broadcom and Qualcomm,
provide functions or register definitions in their drivers to set the
scrambler seed to a constant. By capturing the radio signals, we
also found that Realtek chips use fixed scrambler seeds, although
the exact values are different for different chip generations (802.11n
and 802.11ac).

Since the inverse of an XOR operation is simply the same XOR
operation, we can obtain the de-scrambled bit-stream by applying
the same scrambler with the same scrambler seed as that used in
the WiFi chip.

3 IMPLEMENTATION
We have implemented BlueFi using Python and real, commercial
off-the-shelf WiFi chips. We test the performance of using a GL-
AR150 WiFi router, which is equipped with an (Qualcomm) Atheros
AR9331 802.11n-compliant SoC and is pre-loaded with OpenWrt
[10]. The AR9331 belongs to Atheros’s widely-adopted ath79 prod-
uct family. OpenWrt supports at least 272 routers with ath79 chips
[11]. BlueFi does not use any OpenWrt-specific features. We use
OpenWrt because its source code is available and we can modify
the driver code (ath9k) for the ath79 chip.

We also test the performance of using a TP-Link T2U Nano
WiFi NIC. At its core, T2U Nano uses the RTL8811AU chip from
Realtek. The Realtek RTL88xx device family is popular among WiFi
device makers and dominates the market of USB NICs. Although
RTL8811AU supports 802.11ac, we did not use any of the 802.11ac
modes. We chose this chip mainly because it is cheap and has better
driver support in Linux.

The generation and transmission of a BlueFi packet starts in the
user space. BlueFi first gathers Bluetooth payload. We use 30 bytes
of data with 6 bytes of address as the payload. We use Python to
implement the process described in Sec. 2. The Scipy library [12] is
used for FFT computation. We also implement the modified Viterbi

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

algorithm where the optimization takes the weight of each bit into
consideration. The final results, in the form of WiFi packets, are
sent to the WiFi hardware for transmission.

The required total number of bytes to be sent by WiFi hardware
is in the range of a few thousand bytes, which is much smaller
than the PSDU limits of 65,535 bytes defined in the WiFi physical
layer (PHY) standard. We found that the Linux kernel typically frag-
ments packets with the size exceeding the limit of an MPDU (2,304
bytes) or the MTU of Ethernet (1,500 bytes). Because of these limi-
tations, BlueFi directly sends packets in the driver layer. BlueFi
can support very long Bluetooth packets (even the longest, optional
5-time-slot packets) after driver modification. For AR9331, the trans-
mission starts in the user space and packets are sent to the ath9k
driver in the kernel space via netlink. A callback function will be
invoked and set the transmit parameters such as MCS, SGI before in-
voking the normal transmit function in the driver. For RTL8811AU,
we first remove the hard-coded limit of 2,304 bytes. (This does not
affect normal WiFi traffic since Linux kernel fragments outgoing
packets.) Packets are sent to the driver via a character driver in-
terface. The driver then fills transmit parameters and sends the
packets to hardware.

For the best performance, the value of the scrambler seed needs
to be known. For Atheros chips, [13] suggests that similar to ath5k
devices, the scrambler seed of earlier ath9k chips can be set to a con-
stant of 1 by clearing the GEN_SCRAMBLER bit in the PHY_CTL
register. However, we found that AR9331 uses an almost entirely
different register map. We solved this problem by finding the new
location of the register, which is not mentioned anywhere in the
datasheet or the driver code. Alternatively, it is possible to deter-
mine the scrambler seed without setting registers since scrambler
seeds are predictable (increment by 1 in Atheros’s implementation)
in most WiFi chips [14, 15]. Fixing the seed has no effect on normal
WiFi operation and Realtek chips already use a constant by default.
We find this constant (71 for RTL8811AU) by decoding the WiFi
signals it sends.

4 EVALUATION
4.1 Experimental Setup
We use an iPhone, a Google Pixel and a Samsung S6 (Edge) as Blue-
tooth receivers. We use the nRF Connect app [16] on the iPhone
and the Beacon Scanner [17] app on Android devices. We measured
the signal strength under various conditions for 2 minutes, which
is the default measuring duration of nRF Connect. For the BlueFi
transmitter, the majority of tests are done on the GL-AR150 WiFi
router as this represents the typical use-case (leveraging WiFi in-
frastructure for beacons) we envision. We can control (start/stop) or
modify BlueFi packets remotely via SSH from either the Internet
(e.g., cloud servers), local Ethernet or WiFi. To show that BlueFi is
vendor-agnostic, we also test it on RTL8811AU. Both AR9331 and
RTL8811AU can independently send BlueFi packets regardless of
whether there is any connection to a station or AP or not.

Since the 2.4GHz spectrum is very crowded and there are at
least 2 other APs operating on the same WiFi channel in the test
environment, we expect some interference typical of office envi-
ronments. Except for Sec. 4.3, we use the default transmit power of
AR9331 (18dBm) and RTL8811AU. We did not modify the firmware

of RTL8811AU or the ART (Atheros Radio Test) partition of AR9331,
which is required for regulatory compliance.

4.2 Performance vs. Distance
We place the phones under test near (∼20cm), close (∼1.5m), and
far (4∼5m) from a WiFi transmitter on which BlueFi runs, and
collect the received signal strengths of packets (RSSI) reported by
Bluetooth hardware.

Fig. 5b plots the results of using AR9331, showing that differ-
ent smartphones can receive Bluetooth packets with consistent
performance. Although the measuring duration of nRF Connect
is 2 minutes, the iPhone’s power-saving mechanism kicks in after
approximately 110 seconds elapsed, and therefore iPhone’s traces
are typically 10 seconds short. We observe different RSSI levels
on different phones placed at the same distance. The RSSI of S6 is
generally 6∼10dB less than the counterparts. This is most likely
due to the fact that the underlying Bluetooth chips have different
sensitivity. We observe the same behavior even when dedicated
Bluetooth hardware is used (Sec. 4.4). We found (by transmitting
BlueFi signals using USRP) that smartphones can pick up Blue-
tooth signals of as low as -90 to -100 dBm. Therefore, the margin
is around 10∼20dB, which is theoretically equivalent to 3∼10x in
range. Fig. 5c shows the results of using RTL8811AU under the
same condition. Compared to Fig. 5b, there are some variations
in terms of RSSI, but devices can still steadily receive Bluetooth
packets using BlueFi.

4.3 Performance vs. WiFi Tx Power
OpenWrt provides a convenient way to control the transmit power,
and hence we also measure the received signal strength with respect
to different transmit power levels. We placed the phones 1.5m away
from the WiFi router. Fig. 6 shows the results. The RSSI is very high
on the Pixel and gradually decreases with the transmit power. Even
at the router’s lowest transmit power of 0dBm (=1mW), the RSSI is
still significantly higher than -90dBm. In contrast, such a trend is
not so obvious on S6. Its RSSI values may be more sensitive to the
waveform impairments than to the absolute power. Although the
iPhone’s RSSI shows a similar trend as Pixel’s, it fluctuates more,
which may be the result of multipaths or interference from the
environment.

4.4 Comparison with Bluetooth Hardware
To compare BlueFi with dedicated Bluetooth hardware, we also
measure the performance of using conventional Bluetooth trans-
mitters. Beacon packets are sent using the Beacon Simulator app
[18] on Android. We set the Bluetooth Tx power to high and set the
broadcasting frequency to 10Hz. All other conditions are exactly
the same as those in Sec. 4.3.

The results are plotted in Fig. 7a, where the first two and the
last two columns represent using Pixel and S6 as the transmitter,
respectively. Note that the same fluctuating behavior on iPhone
can be observed here, and hence we conclude that the transmitter
design does not cause such behavior in Sec. 4.3. We can also see that
the RSSI is lower on S6 than on iPhone under the same condition.

Since conditions are exactly the same as those in Sec. 4.3, we
can directly compare Figs. 6 and 7a. At the Tx power of 8dBm, the
performance of BlueFi is found comparable to those of using a

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

(a) Experimental setup

0 20 40 60 80 100 120

Time (s)

-80

-60

-40

-20

0

R
S

S
I
(d

B
m

)

Pixel, Near

S6, Near

iPhone, Near

Pixel, Close

S6, Close

iPhone, Close

Pixel, Far

S6, Far

iPhone, Far

(b) AR9331

0 20 40 60 80 100 120

Time (s)

-80

-60

-40

-20

0

R
S

S
I
(d

B
m

)

Pixel, Near

S6, Near

iPhone, Near

Pixel, Close

S6, Close

iPhone, Close

Pixel, Far

S6, Far

iPhone, Far

(c) RTL8811AU

Figure 5: Evaluation of BlueFi

0 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transmit Power (dBm)

-90

-80

-70

-60

-50

-40

R
S

S
I
(d

B
m

)

(a) Pixel

0 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transmit Power (dBm)

-90

-80

-70

-60

-50

-40

R
S

S
I
(d

B
m

)

(b) S6

0 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transmit Power (dBm)

-90

-80

-70

-60

-50

-40

R
S

S
I
(d

B
m

)

(c) iPhone

Figure 6: Performance vs. Transmit power

Pixel->S6 Pixel->iPhone S6->Pixel S6->iPhone
-100

-90

-80

-70

-60

-50

-40

R
S

S
I
(d

B
m

)

(a) Using dedicated Bluetooth hardware

Bluetooth Disabled BlueFi Pixel S6

Transmitter

40

45

50

55

B
it
ra

te
 (

M
B

p
s
)

(b) WiFi throughput measurements

0 20 40 60 80 100 120

Time (s)

-80

-60

-40

-20

0

R
S

S
I
(d

B
m

)
Pixel

S6

iPhone

(c) RSSI with background WiFi traffic

Figure 7: Comparison with dedicated hardware and effect of background WiFi traffic

dedicated Bluetooth chip. Therefore, withWiFi chips that nominally
come with a default Tx power of 18dBm, one could expect better
performance with BlueFi.

4.5 Effect on Concurrent WiFi Traffic
We also evaluate the effect of BlueFi on concurrentWiFi traffic. For
this, we use iPerf3 [19], a standard tool for benchmarking network
throughput. We install iperf3 on the WiFi router and configure it
as an iPerf3 server. We then connect a Ubuntu laptop to the router
over WiFi and run an iPerf3 client on the laptop. We make the
throughput measurements, reported by iPerf3 every second, for
120s.

As shown in Fig. 7b, we test four scenarios. We establish the
baseline by measuring the throughput without any Bluetooth trans-
mission. Then, we run BlueFi on the same WiFi router that also
runs the iPerf3 server simultaneously. For comparison, we also test

the throughput when we use dedicated Bluetooth hardware on
Pixel and S6 instead.

The figure shows the throughput difference in each scenario
to be very small. Although the baseline has the lowest median
throughput, it has the highest average throughput (UL: 48.8Mbps,
DL: 48.7Mbps). With BlueFi, the average throughputs are 47.8Mbps
UL and 47.7Mbps DL, which are only 1Mbps lower than the baseline.
For comparison, using Pixel and S6 yields average throughputs of
48.6/48.6 and 48.4/48.3Mbps, respectively. Note the contention for
airtime is not the only factor that limits the throughput. Since
we send BlueFi packets by the single-core microcontroller in the
AR9331, it consumes a tiny amount of the CPU and the memory
(0% of the CPU and 1% of the virtual memory), which most likely
contributes to the reduction in throughput. This slight reduction in

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

throughput may be a worthy trade-off for WiFi infrastructures to
support various Bluetooth apps.

Background WiFi traffic has little effect on BlueFi packets. As
Fig. 7c shows, all phones can still steadily receive Bluetooth packets
even when we saturate the WiFi channel. The WiFi traffic only
causes the Pixel’s RSSI to fluctuate by a small amount. As usual, the
power-saving mechanism causes anomalies in the iPhone’s trace
near the end.

4.6 Effect of Each Impairment
To see the effect of the impairment caused by each block in a WiFi
transmitter, we generate various waveforms and transmit them
using USRP.

In Fig. 8, we generate a standard FSK waveform as the baseline
and cumulatively apply each impairment in each column. The last
column represents sending a complete 802.11n PSDU. As the figure
shows, each impairment degrades signal quality by approximately
1dB and the overall degradation is around 2dB. Note that BlueFi
reverses the WiFi operation block-by-block and does not aim to
globally optimize the process. Therefore, some bit-flips, caused by
adding the FEC and the header, may slightly enhance the signal
quality.

4.7 Bluetooth Audio
Other apps can also use BlueFi as their Bluetooth physical and
link layers. We demonstrate this by building an audio transmitter
with A2DP. For general apps, Bluetooth devices transmit packets at
the start of predetermined time slots and hops to different frequen-
cies for different time slots. Therefore, BlueFi must follow a strict
frequency hopping sequence and transmit the generated packets
within the targeted time slot.

On the other hand, WiFi hardware has a few limitations, making
it harder to follow the frequency hopping sequence. Bluetooth
hops to a different frequency every 1.25ms and WiFi chips are not
designed to constantly hop at such a pace. Also, Bluetooth hops
randomly across 79 channels, spanning 79MHz, which is much
larger than the bandwidth of a single 802.11n channel. Finally, the
process of generating Bluetooth GFSK bits from a higher-layer
payload depends on the Bluetooth clock value in the transmission
time slot. Thus, packets need to be generated shortly before the
transmission and then released precisely at the desired time slot.

We use several strategies to overcome these limitations. Instead
of constantly changing the physical WiFi channels, we only use a
single WiFi channel and implement frequency hopping by using
different subcarriers within a WiFi channel. Since oneWiFi channel
only has a bandwidth of 20MHz, it cannot cover the 79-channel
hopping sequence. We solve this by using Bluetooth’s adaptive
frequency hopping (AFH) feature to only use the 20 channels corre-
sponding to the single WiFi channel we select. AFH simply remaps
the channel outside of these channels to one of the 20 channels
and has no effect on the theoretical throughput. AFH is available
on all Bluetooth devices we tested. BlueFi thus covers all types of
Bluetooth channels, since data channels can be specified with AFH
and one advertisement channel is well-covered by WiFi channel 3.
Finally, we use the high-resolution timer [20] in the Linux kernel
to precisely schedule the transmission of each BlueFi packet.

We run BlueFi locally on an i5-3210M laptop and transmit pack-
ets using RTL8811AU. We test BlueFi with Sony SBH20 Bluetooth
headphones and also quantitatively measure the performance using
FTS4BT [21] from Frontline, a standard tool used by industry lead-
ers like CSR and Broadcom. Note that the tool uses CSR’s widely-
adopted BlueCore chips as the underlying hardware, and hence the
results are representative of reception using off-the-shelf Bluetooth
chips. We report the FTS4BT’s PER and throughput measurements.

Due to nulls and pilots, the performance of transmission on
each Bluetooth channel is different within a single WiFi channel.
For example, Fig. 9 shows the packet error rate (PER) reported by
FTS4BT of BlueFi transmitting single-slot packets on 10 different
channels. PER is shown to be as low as 1.9% on good channels
whereas it is much higher for channels adjacent to WiFi pilots. The
measured throughput for the upper layer is 37.5kbps, since single-
slot packets have significant overhead and we only use half of the
channels. Note that Bluetooth’s frequency hopping algorithm does
not guarantee uniform assignment from time slots to channels.

The throughput and goodput are increased vastly by using multi-
slot packets, which incur much less overhead. More importantly,
since the frequency will remain the same for multiple slots, we
effectively cover nearly 2x or 3x the number of time slots with the
same number of Bluetooth channels.

To keep PER low for multi-slot packets, we select 3 best channels
to transmit audio packets. We re-route PulseAudio and send A2DP
audio streams to BlueFi, which then allocates a time slot and cal-
culates its hopping frequency. If it matches the channels we use,
BlueFi additionally allocates 4 subsequent time slots for an audio
packet. The clock value of the allocated slots is used to convert the
audio stream, which is a standard L2CAP stream, into Bluetooth
GFSK bits. L2CAP is a universal layer on which almost all Bluetooth
apps rely. With these bits and a desired frequency offset, BlueFi
then performs various signal processing tasks and generates a WiFi
packet. The packet is marked with the clock value and sent to the
driver. Inside the driver, we construct a high-resolution timer to
schedule the packet to be transmitted at the precise instant specified
by its clock value.

We are able to use BlueFi to stream real-time stereo audio to
Sony SBH20 Bluetooth headphones. In addition, we use FTS4BT to
measure the throughput and PER. We did not modify the Bluetooth
headphones in any way. Without any firmware modification, a
connection token is needed in order for the headphones to accept
incoming audio data, and we first create the token by making a
connection with Bluetooth hardware. Once the connection token is
created, BlueFi can stream audio on its own. Fig. 10 shows the PER
when streaming audio. Longer packets increase PER. The overall
PER is 23% and the upper-layer throughput ismeasured at 122.5kbps,
corresponding to a goodput of 93.4kbps. Throughput and goodput
can be increased, at the expense of higher PER, by filling unoccupied
time slots with single- or multi-slot packets. Conversely, PER can
be drastically decreased by using fewer channels or shorter packets.
We leave further optimizations as future work.

We use the SBC (sub-band coding) codec as it is the mandatory
and the only codec supported by Sony SBH20. Advanced codec
shouldn’t cause any difficulty working with BlueFi since BlueFi,
like any other BT radio and PHY, is only responsible for sending

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

Baseline +CP +QAM +Pilot/Null +FEC +Header

Impairments

-69

-68

-67

-66

-65

-64

-63

R
S

S
I
(d

B
m

)

(a) Pixel

Baseline +CP +QAM +Pilot/Null +FEC +Header

Impairments

-82

-80

-78

-76

-74

R
S

S
I
(d

B
m

)

(b) S6

Baseline +CP +QAM +Pilot/Null +FEC +Header

Impairments

-95

-90

-85

-80

-75

-70

-65

R
S

S
I
(d

B
m

)

(c) iPhone

Figure 8: Effect of each impairment

49.1%
30.9%

7.7%
63.3%

1.9%

9.7%

41.7%

4.3%

31.9%

21.7%

2 5 6 7 9 11 13 14 15 18

Bluetooth Channel Index

0

20

40

60

80

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

CRC Error Header Error No Error

Figure 9: PER with single-slot packets

12.7%
20.2%

37.2%

6 9 14

Bluetooth Channel Index

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

CRC Error Header Error No Error

Figure 10: PER with 5-slot packets (audio)

1’s and 0’s and upper layers are oblivious to how the radio and PHY
are actually implemented.

4.8 Execution Time and Complexity
Our first prototype uses Python and generating a single packet
using Python takes around 2.60s, which includes IQ generation
(0.01s), FFT and QAM (0.18s), FEC decoder (2.39s), scrambler (<0.01s)
and file operation (0.01s). We drastically improved the runtime by
porting BlueFi to C. The C version produces identical outputs as
the Python prototype and generating a single packet takes 46.88ms,
more than 55x faster. Almost 100% of the execution time is spent on

the FEC decoder. The Viterbi algorithm uses dynamic programming
and has a pseudo-polynomial runtime of O(Tn2) where T is the
length of a sequence and n is the number of states. The relatively
long runtime when applying the algorithm is the result of long
sequences and a high (64) number of states.

By replacing the Viterbi algorithm with our real-time decoder
(with a complexity of O(T)) and by using the FFTW [22] library,
the execution time of BlueFi can be reduced by approximately
another 50x. On an old (Ivy Bridge) i5 laptop, the execution time
is around 0.954ms (with the standard deviation of 0.122ms), which
is less than the minimal interval (1.25ms) of two consecutive Blue-
tooth packets. Therefore, BlueFi can run in real time and the delay
incurred is around 0.954ms. The timeliness is important since Blue-
tooth payloads are scrambled with the clock value at the time of
transmission and real-time generation greatly simplifies the design.
More importantly, the throughput is not limited by the computation.
We expect the execution time to be even lower if newer hardware,
SIMD, hardware acceleration or multithreading is used.

For applications where devices use wall power, such as APs and
desktops, the power consumption is less of a concern. For mobile
devices, instead of processing the signals locally, edge or cloud
servers can be used to offload the computation. When run locally,
the signal processing draws moderate power. Using PowerTOP [23],
we measure the power consumption of continuously generating
BlueFi packets for every possible Bluetooth time slot in real time
on an i5-1135g7 laptop. The steady-state power consumption is
1.11W, which represents the case of maximum throughput (100%
duty cycle). This power consumption scales proportionally with
the duty cycle.

5 DISCUSSION
5.1 Different 802.11 Generations
Although supporting 2.4GHz band is not strictly required for 802.11ac,
we found that most 802.11ac devices do support the dual band
operation since operating at only the 5GHz band makes the de-
vice incompatible with 802.11b, g and 2.4GHz 802.11n devices.
802.11ac supports 256-QAM and some chips even support 1024-
QAM. Higher-order modulation means higher resolution in the
frequency domain, and therefore we expect less quantization error
in the QAM process. In 802.11ax, 1024-QAM becomes mandatory.
New modes in 802.11ax use longer guard intervals, and thus they
are not particularly useful to BlueFi.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

It is possible to modify BlueFi so as to work on 802.11g, the
predecessor of 802.11n, hardware as they are very similar. Both
standards use OFDM and the maximum allowable PSDU length
for 802.11a/g is 4,095 bytes, which is still sufficient for containing
Bluetooth packets. However, the main challenge is that we cannot
use SGI. We found a way to solve the CP insertion problem and the
signal can be picked up by Bluetooth receivers, but the performance
is spotty. Since 802.11g was standardized nearly 20 years ago, we
feel that it is too old and most existing WiFi hardware uses newer
standards, such as 802.11n/ac/ax. Therefore, we opted not to support
802.11g hardware.

5.2 Fine-grain Cooperation and Scheduling
BlueFi enables the possibility of fine-grain cooperation and sched-
uling between WiFi and Bluetooth. Previously, the solutions for
Bluetooth and WiFi coexistence were complex. For example, we
found that the codes in the RTL8811AU driver for dealing with
Bluetooth coexistence are nearly 6000 lines long. By converging
two standards on one hardware, BlueFi simplifies the coexistence
problem by eliminating the inter-chip messaging and delay. We
also note that conventional WiFi and Bluetooth cooperation works
by disabling WiFi during Bluetooth transmission. Therefore, from
the transmitter’s perspective, using BlueFi does not sacrifice the
amount of information transmitted over the air within the same
amount of time, since the standard cooperation mechanism already
forgoes the whole WiFi spectrum during Bluetooth transmission.

In the current implementation, BlueFi packets are assigned to
queues just like typical WiFi packets. It is possible to further opti-
mize the priority assignments of both WiFi and Bluetooth packets
so that time-sensitive packets, such as audio data, are given priority
regardless of whether they are sent over WiFi or Bluetooth.

5.3 Remarks/Observations
BlueFi realizes Bluetooth’s radio and physical layers (radio, “base-
band” and link control in Bluetooth’s terminology), on which all
apps and profiles are built, and more. These layers transmit a series
of 1’s and 0’s and are oblivious of the content these bits repre-
sent. Therefore, any app or profile can use BlueFi for Bluetooth
transmission. As our first work exploring Bluetooth and WiFi com-
munication, we focused on transmission. Note that transmission
alone is still very useful in many cases. For example, signal recep-
tion is totally unnecessary for beacons. Also, when using A2DP to
stream audio, the uplink traffic is only for sending ACK packets
and is not critical to the audio operation. Furthermore, the nature
of audio streaming makes ARQ less useful. For example, for very
low latency audio, retransmitted packets will miss the deadline.
In addition, excessive retransmissions not only increase latency
but also decrease usable throughput or goodput. We also note that
regulatory certification is not needed for receivers. Therefore, it is
possible to use BlueFi in conjunction with a dedicated receiving
chip to realize full Bluetooth function without the need for reg-
ulatory certification. We leave the reception function (WiFi over
Bluetooth) as future work.

Some Bluetooth chips are capable of supporting optional mod-
ulation modes other than GFSK, and thus increase throughput by
up to 3x. It is also possible to use 40MHz WiFi channels to support

2x the number of Bluetooth channels and increase throughput. We
leave these two directions as future work.

6 RELATEDWORK
Shadow Wi-Fi [24] allows Broadcom’s 802.11ac chips to transmit
arbitrary waveforms. However, its method is vendor-specific, non-
real-time and would need hardware recertification. Several cross-
technology communication (CTC) systems [25–28] modulate the
power of a transmitter and a receiver senses the amplitude to re-
cover embedded information. The use of this basic modulation leads
to very low bit rates (all of which are less than 700bps) and requires
modifications on both ends.

OfdmFi [13, 29, 30] enables the transmission of LTE-Uwaveforms
using WiFi’s OFDM hardware. Unfortunately, it is not applicable
to Bluetooth since LTE uses OFDM whereas Bluetooth uses GFSK,
which is completely different from OFDM. ULTRON [31] emulates
WiFi CTS frames using LTE-U waveforms. Interscatter [32] uses
WiFi to transmit amplitude-modulated waveforms for RFID com-
munication. WEBee [33] enables WiFi-to-Zigbee communication.
As described in Sec. 3.1.3 in [33], it relies on the error correction
from Zigbee’s direct sequence spread spectrum, which is not avail-
able on any Bluetooth systems. Bluetooth also has 4x higher bit
rates, making it more challenging. Zigbee uses PSK and Bluetooth
requires a completely different waveform and symbol boundary
design. WEBee requires hundreds of big (288×216) matrix inver-
sions for every Zigbee packet, which is computationally expensive.
Timeliness is important for BT data transmission since its wave-
form is time-variant, even for the same payload. Bluetooth uses
time slots and frequency hopping, a communication pattern very
different from Zigbee’s. Finally, Bluetooth is much more widely
deployed and covers unique apps, such as location beacons and
audio. Based on a similar principle, LTE2B [34] focuses on LTE to
Zigbee communication. LongBee [35] extends the range of WE-
Bee. TwinBee [36] applies additional channel coding on top of
WEBee to improve reliability. WIDE [37] is also similar to WEBee
but uses a different pulse-shaping waveform and uses USRP as the
transmitter. A recent CTC work [38] explores the communication
between USRP-emulated WiFi transceivers and modified Bluetooth
devices and mainly focuses on Bluetooth-to-WiFi communication.
There are also several critical differences in WiFi-to-Bluetooth com-
munication. First, the prior work strictly requires modification of
firmware on each Bluetooth device in order to implement the de-
coding of a two-layer error correction algorithm, which first drops
1
4 Bluetooth bits and then decodes the remaining 3

4 bits with the
Hamming(7,4)-code. Our system directly overcomes the impair-
ments introduced by WiFi’s signal processing and does not rely on
such error correction algorithms. Therefore, our system directly
works with commodity Bluetooth devices that are not modified at
all. Using unmodified Bluetooth devices is highly preferable since
most users do not have the tools for firmware updates and most de-
vice vendors do not share their firmware source codes. Furthermore,
oneWiFi device may interface with multiple Bluetooth devices (e.g.,
using APs as Bluetooth beacons) and requiring modifications on
every single Bluetooth device severely limits the use cases. We also
note that employing two error correction algorithms significantly
(34 ·

4
7 =

3
7) decreases the throughput. Second, our system is designed

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Hsun-Wei Cho and Kang G. Shin

and shown to work with real, widely-deployed WiFi chips, not just
with SDR equipment. As we show in Sec. 2, COTSWiFi chips behave
differently from SDR devices, notably in terms of OFDM symbol
filtering and the bit-stream scrambler. From experiments, we found
that the differences are so critical that a design could work perfectly
on SDR devices but fail to work on COTS WiFi chips at all. Finally,
we design and demonstrate practical, real-world applications, such
as Bluetooth beacons and Bluetooth Audio, running on our system
in real time, and not just sending physical-layer packets.

Recitation [39] examines implementations of WiFi to predict bit-
prone locations. Several 802.11 security studies [14, 15, 40] found
that the scrambler seeds in most 802.11p or 802.11n/ac chips are
predictable (constant, using arithmetic sequences or selecting from
a few values).

7 CONCLUSION
We have presented a novel system, called BlueFi, that transmits
legitimate Bluetooth packets using commercial off-the-shelf WiFi
hardware. BlueFi overcomes all signal impairments and enables
the signals to be received by unmodified Bluetooth devices. By
re-purposing existing WiFi hardware, BlueFi broadens the cov-
erage of Bluetooth and enables the use of Bluetooth functions in
WiFi-only environments or with WiFi-only devices. BlueFi can be
controlled from the cloud, and its convergence of the underlying
hardware simplifies the cooperation between WiFi and Bluetooth.
We have evaluated BlueFi on real, widely-adopted WiFi chips and
shown that it supports real-world and real-time Bluetooth apps.
We believe that BlueFi will accelerate the adoption of rich and
valuable Bluetooth frameworks and applications (such as beacons
and audio streaming) already developed using omnipresent WiFi
devices, and will help tens of billions of WiFi devices communicate
with tens of billions of Bluetooth devices.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We would like to thank our shepherd and anonymous reviewers for
their insightful comments. This work was supported in part by NSF,
Grant No. CNS-1646130 and ARO, Grant No. W911NF-21-1-0057.

REFERENCES
[1] Bluetooth SIG. Bluetooth market update 2019. https://www.bluetooth.com/wp-

content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf, 2019.
[2] Bluetooth SIG. Bluetooth market update 2020. https://www.bluetooth.com/wp-

content/uploads/2020/03/2020_Market_Update-EN.pdf, 2020.
[3] Wi-Fi Alliance. Wi-fi® in 2019. https://www.wi-fi.org/news-events/newsroom/

wi-fi-in-2019, Feb 2019.
[4] Cisco. Cisco annual internet report (2018–2023). https://www.cisco.com/c/en/

us/solutions/collateral/executive-perspectives/annual-internet-report/white-
paper-c11-741490.pdf, Mar 2020.

[5] Cisco. Cisco virtual beacon solution. https://content.etilize.com/Manufacturer-
Brochure/1044848777.pdf, Dec 2017.

[6] Texas Instruments. Bluetooth low energy scanning and advertising.
https://dev.ti.com/tirex/explore/node?node=AKvX4BPHvI6W3ea9a0OTxA_
_pTTHBmu__LATEST, 2020.

[7] Ieee standard for information technology—telecommunications and information
exchange between systems local and metropolitan area networks—specific re-
quirements - part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012),
pages 1–3534, 2016.

[8] A. Viterbi. Convolutional codes and their performance in communication systems.
IEEE Transactions on Communication Technology, 19(5):751–772, 1971.

[9] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973.

[10] OpenWrt. Openwrt. https://openwrt.org, May 2020.
[11] OpenWrt. ath79. https://openwrt.org/docs/techref/targets/ath79, May 2020.
[12] SciPy. Scipy. https://www.scipy.org/, Jan 2021.
[13] Piotr Gawłowicz, Anatolij Zubow, Suzan Bayhan, and Adam Wolisz. Ofdmfi:

Enabling cross-technology communication between lte-u/laa and wifi, 2019.
[14] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara Noubir. Fingerprinting wi-

fi devices using software defined radios. In Proceedings of the 9th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec ’16, page 3–14,
New York, NY, USA, 2016. Association for Computing Machinery.

[15] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S. Cardoso, and
Frank Piessens. Why mac address randomization is not enough: An analysis
of wi-fi network discovery mechanisms. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, ASIA CCS ’16, page
413–424, New York, NY, USA, 2016. Association for Computing Machinery.

[16] Nordic Semiconductor. nrf connect for mobile. https://www.nordicsemi.com/
Software-and-tools/Development-Tools/nRF-Connect-for-mobile, 2020.

[17] Nicolas Bridoux. Beacon scanner. https://play.google.com/store/apps/details?id=
com.bridou_n.beaconscanner, 2020.

[18] Vincent Hiribarren. Beacon simulator. https://play.google.com/store/apps/
details?id=net.alea.beaconsimulator, 2020.

[19] iPerf. iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/,
2020.

[20] OpenWrt. The high-resolution timer api. https://lwn.net/Articles/167897/, Jan
2006.

[21] Inc Teledyne LeCroy. Fts4bt bluetooth protocol analyzer and packet sniffer.
https://www.fte.com/products/fts4bt.aspx, 2021.

[22] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “ProgramGeneration,
Optimization, and Platform Adaptation”.

[23] Intel Open Source Technology Center. Powertop. https://01.org/powertop, 2021.
[24] Matthias Schulz, Jakob Link, Francesco Gringoli, and Matthias Hollick. Shadow

Wi-Fi: Teaching smartphones to transmit raw signals and to extract channel state
information to implement practical covert channels over wi-fi. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, page 256–268, New York, NY, USA, 2018. Association for
Computing Machinery.

[25] P. Gawlowicz, A. Zubow, and A. Wolisz. Enabling cross-technology communica-
tion between lte unlicensed and wifi. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pages 144–152, 2018.

[26] Z. Chi, Z. Huang, Y. Yao, T. Xie, H. Sun, and T. Zhu. Emf: Embedding multiple
flows of information in existing traffic for concurrent communication among
heterogeneous iot devices. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pages 1–9, 2017.

[27] Z. Yin, W. Jiang, S. M. Kim, and T. He. C-morse: Cross-technology communication
with transparent morse coding. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, pages 1–9, 2017.

[28] Song Min Kim and Tian He. Freebee: Cross-technology communication via free
side-channel. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, page 317–330, New York, NY, USA,
2015. Association for Computing Machinery.

[29] Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, and Adam Wolisz. Punched
cards over the air: Cross-technology communication between lte-u/laa and wifi.
In 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and
Multimedia Networks" (WoWMoM), pages 297–306, 2020.

[30] Piotr Gawłowicz, Anatolij Zubow, and Suzan Bayhan. Demo abstract: Cross-
technology communication between lte-u/laa and wifi. In IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 1272–1273, 2020.

[31] Eugene Chai, Karthik Sundaresan, Mohammad A. Khojastepour, and Sampath
Rangarajan. Lte in unlicensed spectrum: Are we there yet? In Proceedings of the
22nd Annual International Conference on Mobile Computing and Networking, Mo-
biCom ’16, page 135–148, New York, NY, USA, 2016. Association for Computing
Machinery.

[32] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua Smith.
Inter-technology backscatter: Towards internet connectivity for implanted de-
vices. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page
356–369, New York, NY, USA, 2016. Association for Computing Machinery.

[33] Zhijun Li and Tian He. Webee: Physical-layer cross-technology communication
via emulation. In Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking, MobiCom ’17, page 2–14, New York, NY, USA,
2017. Association for Computing Machinery.

[34] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He. Lte2b: Time-domain
cross-technology emulation under lte constraints. In Proceedings of the 17th
Conference on Embedded Networked Sensor Systems, SenSys ’19, page 179–191,
New York, NY, USA, 2019. Association for Computing Machinery.

[35] Zhijun Li and Tian He. Longbee: Enabling long-range cross-technology commu-
nication. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
pages 162–170, 2018.

https://www.bluetooth.com/wp-content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf
https://www.bluetooth.com/wp-content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf
https://www.bluetooth.com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf
https://www.bluetooth.com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf
https://www.wi-fi.org/news-events/newsroom/wi-fi-in-2019
https://www.wi-fi.org/news-events/newsroom/wi-fi-in-2019
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://content.etilize.com/Manufacturer-Brochure/1044848777.pdf
https://content.etilize.com/Manufacturer-Brochure/1044848777.pdf
https://dev.ti.com/tirex/explore/node?node=AKvX4BPHvI6W3ea9a0OTxA__pTTHBmu__LATEST
https://dev.ti.com/tirex/explore/node?node=AKvX4BPHvI6W3ea9a0OTxA__pTTHBmu__LATEST
https://openwrt.org
https://openwrt.org/docs/techref/targets/ath79
https://www.scipy.org/
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://play.google.com/store/apps/details?id=com.bridou_n.beaconscanner
https://play.google.com/store/apps/details?id=com.bridou_n.beaconscanner
https://play.google.com/store/apps/details?id=net.alea.beaconsimulator
https://play.google.com/store/apps/details?id=net.alea.beaconsimulator
https://iperf.fr/
https://lwn.net/Articles/167897/
https://www.fte.com/products/fts4bt.aspx
https://01.org/powertop

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

[36] Yongrui Chen, Shuai Wang, Zhijun Li, and Tian He. Reliable physical-layer
cross-technology communication with emulation error correction. IEEE/ACM
Transactions on Networking, 28(2):612–624, 2020.

[37] Xiuzhen Guo, Yuan He, Jia Zhang, and Haotian Jiang. Wide: Physical-level ctc via
digital emulation. In 2019 18th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 49–60, 2019.

[38] Zhijun Li and Yongrui Chen. Bluefi: Physical-layer cross-technology commu-
nication from bluetooth to wifi. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 399–409, 2020.

[39] Zhenjiang Li, Yaxiong Xie, Mo Li, and Kyle Jamieson. Recitation: Rehearsing
wireless packet reception in software. In Proceedings of the 21st Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’15, page
291–303, New York, NY, USA, 2015. Association for Computing Machinery.

[40] B. Bloessl, C. Sommer, F. Dressier, and D. Eckhoff. The scrambler attack: A
robust physical layer attack on location privacy in vehicular networks. In 2015
International Conference on Computing, Networking and Communications (ICNC),
pages 395–400, Feb 2015.

[41] Keysight Technologies. Guard interval (802.11a/g/j/p ofdm). http://rfmw.
em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-
ofdm/content/dlg_ofdm_fmt_guardintrvlfrac.htm, 2020.

A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Processing Considerations
Although it is possible to implement BlueFi entirely on the micro-
processors in WiFi APs or NICs, we don’t see any reason for doing
so if it is implemented in software. Since WiFi devices are typically
connected to much more powerful hosts or cloud servers, we can
leverage the computing power on those devices to run BlueFi so
that WiFi hardware only needs to send the final bit-stream.

A.2 Recommendations for WiFi Vendors
In the process of designing BlueFi, we gained interesting insights
into how WiFi chip makers can integrate this functionality or fur-
ther improve the signal quality from the devices’ point of view.

The CP insertion block can completely disrupt the reception, and
therefore the signal quality will improve if it can be bypassed. Such
a feature is already available onWiFi testing equipment [41] but not
yet on commercial chips. Since the operation of IFFT complicates
the optimization of time-domain phases, this problem will be much
easier if it can be bypassed. Our system is also easier to be used by
chips that can control the scrambler seed and are fully compliant
with the PSDU length specification in the 802.11n standard.

Note that these recommendations mainly come from a signal
quality’s perspective. In practice, it might be more beneficial to
run BlueFi “as is” since some of the modifications may require
recertification and BlueFi is perfectly operational without these
features.

A.3 Finding an Optimal Solution
The principle of BlueFi is finding near optimal inverse operations
of WiFi transmitters block-by-block. We used this approach mainly
because it is intractable to derive a global optimal solution. A global
optimal solution must not only guarantee optimality but also con-
sider the interactions between blocks.

Even finding an optimal inversion of some of the blocks is diffi-
cult. As we discussed in Sec. 2.5, finding an optimal combination
of the QAM symbols can be formulated as an IP problem and the
complexity is practically impossible for 64-QAM. Note that the
complexity quickly becomes astronomical for 256- and 1024-QAM.

A.4 Glossary
A2DP: Advanced Audio Distribution Profile
AFH: Adaptive Frequency Hopping
ARQ: Automatic Repeat Request
BPSK: Binary Phase Shift Keying
CFO: Carrier Frequency Offset
CP: Cyclic Prefix
CRC: Cyclic Redundancy Check
FEC: Forward Error Correction
FFT : Fast Fourier Transform
(G)FSK: (Gaussian) Frequency-Shift Keying
IFFT: Inverse Fast Fourier Transform
IP: Integer Programming
IQ: In-phase and Quadrature
L2CAP: Logical Link Control and Adaptation Protocol
LDPC: Low-Density Parity-Check
MAC: Medium Access Control
MTU: Maximum Transmission Unit
OFDM: Orthogonal Frequency-Division Multiplexing
PER: Packet Error Rate
QAM: Quadrature Amplitude Modulation
QPSK: Quadrature Phase Shift Keying
RSSI: Received Signal Strength Indicator
SGI: Short Guard Interval
SBC: Sub-Band Coding

http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/dlg_ofdm_fmt_guardintrvlfrac.htm
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/dlg_ofdm_fmt_guardintrvlfrac.htm
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/dlg_ofdm_fmt_guardintrvlfrac.htm

	Abstract
	1 Introduction
	2 System Design
	2.1 Primers
	2.2 Overview and Methodology of 2=0.4em3=0.2em4=0.1em7=0.1em=`BlueFi
	2.3 Construction of IQ Waveform
	2.4 CP Insertion
	2.5 QAM
	2.6 Pilots and Nulls
	2.7 FEC Coder
	2.8 Scrambler

	3 Implementation
	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance vs. Distance
	4.3 Performance vs. WiFi Tx Power
	4.4 Comparison with Bluetooth Hardware
	4.5 Effect on Concurrent WiFi Traffic
	4.6 Effect of Each Impairment
	4.7 Bluetooth Audio
	4.8 Execution Time and Complexity

	5 Discussion
	5.1 Different 802.11 Generations
	5.2 Fine-grain Cooperation and Scheduling
	5.3 Remarks/Observations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Processing Considerations
	A.2 Recommendations for WiFi Vendors
	A.3 Finding an Optimal Solution
	A.4 Glossary

