
FLEW: Fully Emulated WiFi
Hsun-Wei Cho and Kang G. Shin

University of Michigan

ABSTRACT
WiFi is the de facto standard for providing wireless access to the
Internet using the 2.4GHz ISM band. Tens of billions of WiFi de-
vices were shipped worldwide and WiFi Access Points (APs) are
ubiquitous in public, enterprise and personal environments. We
have also witnessed the fast growth of IoT (Internet of Things)
devices. With more stringent board-space and power requirements,
many IoT devices use more power-efficient, lower-cost and smaller
wireless chips, such as Bluetooth or proprietary wireless chips. Due
to the mismatch of different wireless technologies, these devices
access the Internet indirectly via far less ubiquitous IoT gateways.
Bluetooth and most proprietary wireless chips are based on FSK
(Frequency-Shift Keying) modulation since FSK can be implemented
with extremely simple and low-power FM (Frequency Modulation)
circuits.

In this paper, we present FLEW (Fully Emulated WiFi), which
uses a single FSK chip to fully emulate both transmission and
reception of WiFi signals. Using FLEW, FSK-equipped IoT or mo-
bile/wearable devices can directly communicate with unmodified
WiFi APs, just like any WiFi device. FLEW combines the best of
both technologies: extremely simple and low-power hardware and
ubiquitous Internet access.

We evaluate FLEW extensively with chips from all major chip
makers. At 20 meters, FLEW can sustain 708kbps uplink and 857kbps
downlink at the transport layer.

CCS CONCEPTS
• Networks→ Wireless local area networks.

KEYWORDS
Cross-Technology Communication, WiFi, FSK, Bluetooth

ACM Reference Format:
Hsun-Wei Cho and Kang G. Shin. 2022. FLEW: Fully Emulated WiFi. In The
28th Annual International Conference On Mobile Computing And Networking
(ACM MobiCom ’22), October 24–28, 2022, Sydney, NSW, Australia. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3495243.3517030

1 INTRODUCTION
WiFi is the de facto standard for tens of billions of devices [1]
to access the Internet. Designed to support all types of Internet
applications, WiFi chips require a considerable amount of DSP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3517030

circuitry for processing various WiFi waveforms, including high-
throughput waveforms, leading to physically larger chips, higher
energy consumption and higher chip costs.

Typical IoT applications only require a low data rate but energy
consumption and chip size/cost are of paramount importance. Ow-
ing to these requirements, many IoT devices are built with FSK
chips, also commonly known as 2.4 GHz proprietary wireless chips.
FSK chips are also the hardware of Bluetooth/BLE. In fact, many
Bluetooth/BLE chips are essentially FSK chips with a Bluetooth
software stack. FSK is arguably the simplest modulation scheme
that offers decent enough throughput and noise immunity. Us-
ing FM circuits to transmit/receive digital waveforms, FSK chips
are extremely energy-efficient and low-cost as well as occupy less
board-space than WiFi chips. For example, we find the smallest
WiFi chip available is Silabs’ WF200 [2], whereas the smallest FSK
chip available is TI’s CC2500 [3]. Table 1 shows a comparison be-
tween these two chips. Although they differ in many ways 1, FSK
chips are, in general, much smaller and cheaper, and consume less
power than WiFi chips.

Table 1: Comparison of WiFi and FSK chips.

Tech. Package Tx current
(mA)

Rx current
(mA)

Price
(USD)

WF200 WiFi QFN32 108 (PA) +
44.6 (BB) 41.6 3.28

CC2500 FSK QFN20 100 (PA) +
21.5 (BB) 19.6 1.18

However, using protocols other than the ubiquitous WiFi means
that IoT devices cannot use the WiFi infrastructure for Internet
connectivity. Instead, they must rely on additional IoT gateways
to relay the data to/from, and access the Internet indirectly. This
gateway reliance implies that, to use any IoT device (with FSK
or protocols other than WiFi), their corresponding IoT gateways
must be installed in the environment. This hampers the adoption
of IoT since using these IoT devices requires not only buying the
devices but also investing/deploying/managing the IoT gateways.
This "gateway problem" [5] is worsened by the non-existence of a
universal protocol that dominates the market, and hence different
IoT devices may require separate gateways.

This poses an important question: What if we can still use the
small, simple, low-power FSK chips on the IoT devices, but we somehow
allow FSK chips to directly communicate with WiFi infrastructures?
If such communication is possible/enabled, these FSK IoT devices
can leverage existing WiFi infrastructures and eliminate the need
1WF200 is much newer than CC2500 and therefore allows lower supply voltage (1.8V)
for baseband and Rx circuits compared to CC2500 (3.0V). CC2500 still consumes less
power after factoring in this difference. Newer FSK chips have even lower power
consumption and can use lower supply voltage. For example, CC2650 [4] allows 1.8V
operation and consumes only 6.1mA (Tx, BB) and 5.9mA (Rx) at 3.0V. An end-to-end
power measurement with the same power condition is present in Sec. 4.9.

https://doi.org/10.1145/3495243.3517030
https://doi.org/10.1145/3495243.3517030

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

for IoT gateways. They can stay connected wherever there is WiFi
coverage!

To answer this question, we propose FLEW, which turns FSK
chips into WiFi chips and enables them to directly communicate
with unmodified WiFi APs.

Although several CTC (cross technology communication) efforts
have explored communications from WiFi devices, FLEW represents
a very different design philosophy and targets different use-cases.
In particular, prior WiFi CTC work is WiFi-centric whereas FLEW is
FSK-centric. Specifically, prior work enables one-way communica-
tion from modified WiFi APs/devices to unmodified FSK devices
(e.g., Bluetooth), whereas FLEW focuses on enabling bi-directional
communication between unmodified WiFi APs/devices and mod-
ified FSK devices. FLEW complements existing CTC work well by
covering scenarios where users are not permitted to modify the
firmware of WiFi APs/devices (e.g., WiFi APs in public or enter-
prises), or where one FSK device may connect to many APs (e.g.,
roaming) arbitrarily without needing to modify the firmware of
every single AP. Furthermore, many IoT applications have uplink
(i.e., FSK to WiFi) traffic, which is not possible with the prior WiFi-
to-FSK work.

Even though several CTC studies have demonstrated the commu-
nication from WiFi devices to Bluetooth devices, their WiFi-to-FSK
solutions are still not directly applicable because of more stringent
system requirements. In particular, prior work requires modifica-
tion of WiFi transmitters to generate FSK waveforms. However,
since the goal of FLEW is for FSK chips to directly communicate with
unmodified WiFi devices, it must be able to decode any standard
WiFi packets at one data rate at least; not just WiFi packets with a
magic payload (a payload that results in FSK-look-alike waveforms).
To this end, we show how FSK hardware can be used to receive
any WiFi DSSS waveforms. The difference can also be explained
with the waveforms transmitted by the WiFi devices. Prior work
modifies WiFi devices to transmit FSK-look-alike waveforms. In
contrast, under FLEW, WiFi devices transmit standard 802.11b DSSS
waveforms, like the conventional 802.11b WiFi operations, thus
allowing the use of unmodifiedWiFi devices.

Furthermore, we show how FSK hardware can be effectively
used to transmit 802.11b waveforms, thus enabling bi-directional
communication between FSK and unmodified WiFi devices. FSK-
to-WiFi communication is of great significance because any useful
WiFi operation requires bi-directional communication at the physi-
cal layer. Even with a unilateral transport layer traffic, the physical
layer requires the transmission of ACK packets in the opposite
direction. Bi-directional communication is also needed for a client
to join a WiFi network.

The different philosophy of FLEW also leads to different trade-
offs. FLEW tries to modify FSK devices so that FSK devices work like
WiFi devices as much as possible, whereas prior CTC work tries to
modify WiFi devices so that they work like FSK/Bluetooth devices
as much as possible. For this purpose, we utilize the underlying
FSK hardware, instead of the full BLE/Bluetooth stack, to ensure a
FLEW device behaves as close to a WiFi device as possible, since a
full BLE/Bluetooth operation imposes unnecessary software limits.
To ensure maximum compatibility with different unmodified WiFi
devices, a FLEW terminal is designed to directly appear like a WiFi
device, not a WiFi and Bluetooth device, during FLEW operation.

This does not imply that new hardware is needed, however, as
we have shown that FLEW can be implemented on existing FSK
devices and chips. While prior CTC works are compliant with both
Bluetooth andWiFi waveforms, they cannot support full operations
of either standards. For example, the (COTS) WiFi chips in prior
CTCwork cannot receive Bluetooth packets and the Bluetooth chips
cannot receive arbitrary WiFi packets. Although FLEW directly uses
conventionalWiFi waveforms and therefore does not have the “dual-
compliance” during FLEW operations, we feel that this is a worthy
trade-off because using conventional WiFi waveforms achieves the
goal of enabling full WiFi operations and is the only way to ensure
maximum compatibility with unmodified WiFi devices.

On the technical side, FLEW leverages the insights that a) at its
core, WiFi (802.11b DSSS) encodes the information in the form
of PSK (Phase Shift Keying), b) PSK modulation is similar to, and
therefore can be demodulated by FSK receivers with a frequency
shift, and c) PSK with DSSS signals can be transmitted by directly
connecting digital waveforms to the mixer. These high-level prin-
ciples are relatively simple, but are extremely powerful, and can
bridge the gap between DSSS and FSK modulations.

In contrast to the conventional IoT topology where gateways
and devices employ similar radio circuitry and chips, the hard-
ware of WiFi APs and FSK devices in FLEW is highly asymmetri-
cal. This asymmetry provides an opportunity to use simple and
energy-efficient FSK chips while still providing good performance
by leveraging powerful PAs and LNAs in WiFi APs. In addition,
WiFi’s DSSS modulation at 1Mbps has a higher coding gain than
Zigbee or Bluetooth, and is intrinsically robust. Finally, to sup-
port higher data rates in newer 802.11 standards, many APs come
with multiple antennas and advanced MIMO signal processing can
further enhance the performance in both directions. Specifically,
WiFi APs are allowed to transmit at high power and some APs sup-
port transmit beamforming for 802.11b [6], which enhances signal
strength and overall mixed-client throughput. Also, many APs use
diversity or MIMO processing (e.g., RAKE or MRC for 802.11b) to
boost reception performance. For example, for 1Mbps, modernWiFi
APs has a sensitivity as low as -102dBm [7], which outperforms the
latest Zigbee offerings from TI (-100dBm [8]) and Microchip/Atmel
(-101dBm [9]) even though WiFi is 4x faster than Zigbee (250kbps).
Compared to Bluetooth/BLE chips, the difference is even greater
(TI: -97dBm [10], Qualcomm/CSR: -95dBm [11], Broadcom/Cypress:
-96dBm [12]).

Without WiFi encryption, FLEW is as secure as existing FSK pro-
tocols. If an existing protocol encrypts the payload, FLEW can simply
transmit the encrypted payload over open WiFi networks. On the
other hand, since it allows devices to directly communicate via
WiFi, FLEW can provide stronger, enterprise-grade security protec-
tion by directly using the tried-and-true WiFi security framework
on which billions of devices currently rely.

We implement FLEW with COTS FSK chips. With FLEW, these
FSK chips are emulated as WiFi chips and can communicate with
conventional, unmodified WiFi devices/APs. We extensively evalu-
ate the performance of FLEW with multiple WiFi devices equipped
with many different widely-adopted chips from all major WiFi chip-
makers. We note that FSK hardware is the foundation of Classic
Bluetooth and BLE (Bluetooth Low Energy). Therefore, with FLEW,

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

it is possible to simultaneously support Bluetooth, BLE and WiFi
using a single FSK chip!

FLEW enables connectivity and use-cases that were previously
deemed impossible. FLEW allows IoT devices to directly connect
to already-deployed WiFi APs and eliminates IoT gateways alto-
gether. Alternatively, since FSK chips are cheaper, smaller and more
energy-efficient than WiFi chips, FLEW can provide general Internet
access for mobile devices where cost, area and/or power are of great
importance. As an example, we showcase using FLEW for steaming
high-quality music or streaming 720p YouTube videos in real time.

In FLEW, we focus on transmitting/receiving data at 1Mbps, which
is on par with BLE 4 and 4x faster than Zigbee, and is sufficient for
IoT operations. For WiFi, the 1Mbps data rate has a special signifi-
cance. 1Mbps has the most robust performance among all possible
WiFi modulations and many APs use 1Mbps for management (bea-
con, association, authentication, etc.) frames regardless of the data
rates of data frames. In a multi-rate environment (which is almost
always the case for typical WiFi networks), the transmit data rate
is controlled by the rate adaptation algorithm (RAA), which will
reduce the transmit data rates (i.e., use more robust modulation)
if transmitted packets are not acknowledged. APs will try 1Mbps
modulation if transmitting with higher data rates is unsuccessful.
Therefore, implementing 1Mbps ensures that the WiFi-FSK connec-
tion will converge to a steady state using 1Mbps. If only a higher
data rate is supported instead, then a connection may not be able
to be established because of the packet loss of management frames.
In addition, even if the higher data rate is negotiated, any transient
behavior in the network may cause two devices to diverge from
the agreed-on data rate and thus cause disconnection.

For the WiFi AP, a FLEW terminal will appear as a device that
needs the most robust modulation and only 1Mbps modulation
can get through. Such a scenario can legitimately happen with a
conventional WiFi terminal (e.g., with a weak signal or with strong
interference). Therefore, rate adaptation algorithms should always
support FLEW operations regardless of their actual implementation.

The techniques used in FLEW may also help develop future low-
power WiFi transceivers. For example, we show that instead of
using a full-blown multi-rate PSK receiver with complicated phase
synchronization, the relatively simple FM/FSK demodulator can
be used to demodulate WiFi waveforms at 1Mbps very effectively.
Since 1Mbps is frequently used to transmit management frames, the
receiver can be completely turned off and only use low-power FM
circuits to monitor the management traffic. The FM circuit can be
used to wake up the main WiFi receiver after certain management
frames (e.g., those containing traffic indication map (TIM)) are
received. We note that Bluetooth is also using FM circuits, so it is
even possible to use a Bluetooth receiver to wake up WiFi.

The insights gained from designing FLEW are also useful for
understanding and mitigating the interference between FSK (such
as Bluetooth) and WiFi. For example, Bluetooth devices should
avoid using certain bit sequences (e.g., 0x05AE4701) as their access
codes, since legitimate WiFi waveforms can cause accidental packet
detection on Bluetooth receivers with such access codes.

2 SYSTEM DESIGN
2.1 Primer

Frequency

Discriminator Filter Filter

Received

Waveform

Demodulated Waveform

(Frequency Estimate)

Figure 1: General model of FM/FSK receivers.

SFD
(Configurable)

Preamble
(101010 …)

Data CRC
(Optional)

Figure 2: FSK packet format.

2.1.1 FSK. At the bit level, FSK is simply FM with digital data. In
other words, FSK sends digital (high or low) data into an FM modu-
lator. The instantaneous frequency of an FSK waveform depends on
the input level. For bit ‘1’, the frequency is higher than the center
frequency by one frequency deviation. For bit ‘0’, the frequency is
lower than the center frequency by one frequency deviation. An
FSK receiver uses an FM demodulator to recover the bits. The FM
demodulator tries to estimate the received signal’s instantaneous
frequency, which corresponds to the original digital data.

Fig. 1 shows the general model of FM/FSK receivers. The first
filter is used to extract signals near the receive frequency. The
filter after the frequency discriminator is also essential since the
frequency discriminator is nonlinear and the filtering on the signal
itself does not guarantee that its instantaneous frequency is prop-
erly filtered. Fig. 1 is the general model, regardless of whether the
filters or demodulator are implemented in analog or digital domain,
or whether there is down-conversion between these components
(e.g., zero-IF or low-IF receivers).

Fig. 2 shows the packet format of FSK/proprietary protocols. The
preamble consists of alternating 1’s and 0’s so that the demodulator
in the receiver can be stabilized. The preamble is followed by a con-
figurable SFD,2 which signifies the receiver that it should expect
and start collecting actual data after it receives SFD. If CRC is en-
abled, the CRC sequence is appended to the data field for detecting
bit errors.

DBPSK

Modulator
Packet Scrambler DSSS

1 MSym/s 11 MChip/s
Waveform

Figure 3: 802.11b modulation process.

SFD
(1111001110100000)

SYNC
(1111 … 128 bits)

PLCP Header
(Data rate/length …)

Data
(First byte is frame type)

FCS
(4 Bytes)

Figure 4: 802.11b packet format.

2.1.2 802.11b. Fig. 3 shows the modulation process of 802.11b. The
incoming bitstream is first scrambled with a different scrambler
from other 802.11 standards. The scrambled bits are modulated
by differential binary PSK, which either rotates the phase of the
carrier by π for bit ‘1’ or keeps the phase unchanged for bit ‘0’. This
waveform is then modulated using DSSS, which further toggles the
phase within each bit duration using the 11-chip Barker sequence.

Fig. 4 shows the packet format of 802.11b. The SYNCfield consists
of 128 bits of ‘1’, which are used to stabilize the receiver. A constant
SFD follows the SYNC field and is used by the receiver to detect the
start of a WiFi packet. The PLCP header contains vital information
about the modulation and the total length of subsequent fields. The
PLCP header also contains a 16-bit CRC for detecting errors in the
header. Upper-layer packets are put into the data field. The FCS
2To avoid confusion, here we use the WiFi nomenclature. This field is commonly
referred to as the sync word in FSK protocols.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

(Frame Check Sequence) uses CRC32 and is calculated over the
data field. A WiFi transmitter constructs a physical-layer packet
this way before sending the entire packet into the scrambler.

2.2 Overview
For any useful WiFi operations, bi-directional communication is
required. Therefore, Secs. 2.3 and 2.4, respectively, show how the
FSK hardware can be used to receive and transmit WiFi signals with
arbitrary payloads. In addition, since WiFi devices work in a half-
duplex manner, the FSK chip must switch between transmission
and reception appropriately and timely to avoid missed reception
or transmission collisions. These MAC layer issues are addressed
in Sec. 2.5.

2.3 WiFi to FSK

1400 1500 1600 1700 1800 1900 2000 2100 2200

Sample

-600

-400

-200

0

200

400

600

F
re

q
u

e
n

c
y
 D

e
v
ia

ti
o

n
 (

k
H

z
)

802.11b FSK

Figure 5: Demodulation outputs of bits modulated by
802.11b and FSK.

2.3.1 Bit Level. We devise a key method that enables FLEW to use
FSK hardware to receiveWiFi frameswith arbitrary payloads. Its un-
derlying insight is:With an appropriate frequency shift, con-
ventional FM/FSK receivers can work as a DSSS plus DBPSK
demodulator.

The implication of this insight is significant. With this method,
instead of using a conventional PSK demodulator (which involves
much more complicated phase synchronization), a simple, low-
power FM demodulator can be used. Furthermore, the addition of
DSSS requires conventional demodulators to run at a significantly
higher speed (e.g., 11MHz). In FLEW, the FM demodulator can run
at a much lower speed (1MHz). Therefore, this method allows FLEW
to demodulate conventional WiFi frames in a much simpler and
more power-efficient fashion.

The intuition behind this method is that the DSSS modulation
process is essentially, in the frequency domain, convoluting the
PSK spectrum with the spectrum of a repeated 11-length barker
sequence. Note that an 11-length barker code has a white spec-
trum and the spectrum of a repeated 11-length barker sequence
is only non-zero at ±1, ±2, ±3, ±4, ±5MHz. The convolution pro-
cess simply copies the PSK spectrum and places the replicas at
these frequencies. Therefore, if we employ a relatively narrow filter
to the DSSS waveform near one of the frequencies, the result is
approximately the main lobe of the PSK spectrum.

Differential PSK is somewhat similar to FSK. Conceptually, the
difference of phase is frequency. Onemajor difference is that, in FSK,
the phase is constantly increasing or decreasing for the duration

of each bit, whereas in DPSK, the phase remains constant and
only changes between bits. In FSK receivers, this difference can be
mitigated by the filter after the frequency discriminator since the
filter smoothens the step-like phase waveform of PSK modulation
to become a constantly increasing or decreasing phase waveform.

Finally, we also need a small frequency shift in addition to, say
1 MHz, because an FSK receiver expects the frequency deviation
of each bit to be either positive or negative. However, with DBPSK
waveforms, the frequency deviation is either zero (no phase change)
or non-zero (phase change). This can be corrected using a small
amount of frequency shift, which equivalently adds a constant bias
to the frequency deviation of each bit, and converts the frequency
waveform to be non-return-to-zero.

Applying frequency shifts requires no additional hardware. In
practice, we can simply change the center frequency of the receiver.

Let us illustrate this method with an example. In Fig. 5, we show
the output waveforms of a FSK receiver demodulating an 802.11b
waveform and a standard FSK waveform. Specifically, we generate
an 802.11b waveform and use the general model of FSK receivers to
demodulate the waveform. The receiver has a frequency offset of
1.22MHz and two low-pass filters are used. The first trace shows an
802.11b waveform segment demodulated using the FSK model. The
segment corresponds to bit 67 to bit 113 of DBPSK bits, which are
10101010000010110101110010001110000000111100010. The second
trace shows the FSK demodulation results when these bits are
instead modulated with FSK (using exactly the same modulation
parameters as BLE), and demodulated without the frequency offset.
Although the first trace tends to have higher overshoot, the correct
bit sequence is still clearly visible, indicating that FSK receivers can
indeed be used as WiFi receivers.

With the FSK hardware replacing DSSS and DBPSK demodulator,
the only step left for recovering theWiFi bits is descrambling the bit
stream. The descrambling process is extremely simple. Furthermore,
the descrambling can be done in batch to each byte or word, and
does not require extracting/reassembling bits to process them one-
by-one. Specifically, the descrambling in 802.11b can be simplified as
XOR’ing the input with two shifted versions of the input. With least-
significant-bit-first ordering, the descrambling process involves
only 4 lines of code:

reg = (descrambling_in<<8) | lastbyte;
reg2 = reg ^ (reg>>3) ^ (reg>>7);
descrambling_out = 0xFF & (reg2);
lastbyte = descrambling_in;

2.3.2 Packet level. Even with bit-level communication from WiFi
to FSK hardware, we still need to address the differences in packet
formats in order to successfully receive a WiFi packet.

The 802.11 standard [13] (Sec. 17.2.3.2) explicitly specifies the
constant seed that an 802.11b transmitter should use. Because the
scrambler seed is always the same, the scrambled SYNC sequence is
always the same bit sequence.We verify that this is also the behavior
of actual WiFi chips. For all WiFi devices we tested, including
(Qualcomm) Atheros, Broadcom, Intel, Marvell, Mediatek/Ralink
and Realtek chips, their (scrambled) SYNC is exactly the same bit
sequence.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

During reception, conventional WiFi chips detect a WiFi packet
by matching the SFD pattern (which follows the SYNC field) in the
descrambled DBPSK sequence.

In FLEW, the FSK demodulator outputs the scrambledWiFi DBPSK
sequence. Because the (scrambled) WiFi SYNC field is always the
same sequence, FLEW detects WiFi packets by directly matching
a pattern in the scrambled sequence instead of the descrambled
sequence. This design allows use of the SFD matching hardware in
FSK chips, which is significantly more efficient. Since the matching
circuit in FSK chips expects alternating 1’s and 0’s preceding the
SFD to stabilize the demodulator, FLEW matches a bit sequence
within the scrambled WiFi SYNC field instead of matching the
scrambled WiFi SFD. Specifically, as illustrated in Fig. 5, bit 67 to
bit 73 of the DBPSK bit stream is [1,0,1,0,1,0,1] and bit 74 to bit 105
is 0x05AE4701. Therefore, we configure FSK chips to search for
0x05AE4701. Once this sequence is detected, FSK chips continuously
put subsequent bytes into the receive FIFO.We can thus periodically
retrieve these bytes and descramble them to recover theWiFi packet.
The reception is terminated once the number of bytes received
reaches the length specified in the PLCP header.

While testing FLEW, we unexpectedly discovered a major bug
in Realtek chips: their WiFi SYNC field is 2 bits shorter (126 bits
of 1 instead of 128 bits of 1) than required. This is a clear devia-
tion from the 802.11 standard. Even so, we further devise a simple
and effective solution so that FLEW uses the same routine for com-
municating with both Realtek and non-Realtek transmitters. FLEW
dynamically detects and fixes the bug for the former. Specifically,
after descrambling, FLEW checks the last byte of the WiFi SYNC
field, which should be 0xFF, as specified in the standard. If, instead,
it is 0x3F, this indicates that the SYNC field is 2 bits shorter and
2 bits of SFD are shifted to this byte (since WiFi transmits least
significant bits first). If the bug is detected, we simply apply a shift
of 2 bits to all subsequence bytes.

The tail of eachWiFi packet is 4 bytes of FCS, which is the CRC32
of the data field. FCS is used to check the integrity of the received
packet and if the calculated FCS does not match the received FCS,
the receiver should not acknowledge this packet and the transmitter
will re-transmit the packet. The implementation of FCS in FLEW is
straightforward. We add a few optimizations, such as using table-
based calculation and updating the CRC immediately after receiving
each byte.

2.4 FSK to WiFi

Waveform

DAC

DAC

D
ig

it
a

l
B

a
se

b
a

n
d

Mixer

Mixer

LO

I

Q

SSP Output

(a) FSK transmitter & waveform injection

-1

I

1

-1

Q
1

Typical

BPSK

Implemented

(b) Constellation

Figure 6: FSK to WiFi Design

In a conventional PSK system, the PSK receiver is usually com-
plicated due to phase synchronization, but the PSK transmitter is
extremely simple. In fact, when a digital bit stream is directly fed
into a mixer, the output is the PSK waveform, since bit ‘0’ has a
negative voltage and inverts the carrier, while bit ‘1’ has a positive
voltage and leaves the carrier unchanged.

By convention, BPSK constellations are (1,0) and (-1,0), as illus-
trated in Fig. 6b. When these constellations are fed into the IQ
modulator, we essentially feed the digital bit stream (that swings
to either 1 or -1) into the I-branch mixer and turn off the Q-branch
mixer. Note that (1,0) and (-1,0) are 180° apart. However, this con-
stellation involves three voltages (-1,0,1). A simpler implementation
is actually tying the I-branch and Q-branch together. The constel-
lations become (1,1) and (-1,-1), which are still 180° apart but only
involve two voltages. Furthermore, the output gets 3dB stronger
using both branches.

To transmit PSK waveforms using FSK hardware, we turn off
the digital baseband and DAC completely and directly inject the
signals into the mixers, which can be achieved using the analog
pins on FSK chips.

802.11 uses DSSS after PSK modulation. A PSK signal with DSSS
is still a PSK signal, only faster. Conceptually, before DSSS, we are
injecting either 1 or -1 into the mixer every 1µs. After DSSS, we
are injecting either 10110111000 or 01001000111 every 1µs, which
translates to a chip rate of 11MChip/s.

To generate the bit stream at 11Mbps, the serial interface (such
as SPI, SSP, USART or even I2S) in microcontrollers can be used.
These serial interfaces are also commonly double-buffered, ensuring
that bits are transmitted continuously and precisely. In fact, on the
microcontroller we use, the SSP has 8 transmit buffers.

At the packet level, FLEW assembles packets according to the
802.11b format.

2.5 FSM and MAC Layer
2.5.1 CSMA/CA. In WiFi, the transmission and reception of sig-
nals operate in half-duplex. AWiFi device should avoid transmitting
signals when other devices are transmitting. WiFi uses CSMA/CA
in the MAC layer, which senses the spectrum before transmission
and waits if a wireless carrier is present. Typical FSK chips are
also capable of sensing the spectrum. In particular, when in receive
mode, FSK chips give the RSSI estimates. Combined with the timing
design, presented in Sec. 2.5.3, CSMA/CA can be thus implemented.

2.5.2 Packet Handling. In typical WiFi systems, most of packet
handling is implemented in the driver or software layers. Two
exceptions are ACKs and RTS-CTS, which are subject to a very
tight timing constraint, and hence usually handled by hardware.

Except for special packets, normal unicast packets in WiFi need
to be acknowledged immediately. Failure of acknowledging a packet
results in the sender constantly re-transmitting the same packet,
which severely decreases the goodput. Furthermore, when a client
tries to join a network, it must acknowledge the association re-
sponse sent by the AP. Otherwise, the AP de-authenticates the
client and a connection cannot be established.

According to the 802.11 standard, an ACK frame should be trans-
mitted by the receiver one SIFS after it receives a packet that passes
the FCS check. 802.11b has a very short SIFS (10µs). The standard

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

also specifies the ACKTimeout, which is SIFS (10µs)+aSlotTime
(20µs)+Preamble/Header (192µs). This timeout value is measured
with respect to the end of the header of the ACK packet. Thus,
when measured with respect to the start of the preamble, the time
interval between a packet and its ACK packet should ideally be less
than 30µs.

According to our testing, the Rx-to-Tx turnaround time of the
FSK chip we use is around 30∼40µs. We found that for chips of
industry leaders (Atheros, Broadcom, etc.), the ACK packets sent
can be successfully detected without any further design or mod-
ification. No workaround is needed for connecting to APs with
Atheros, Broadcom and Marvell chips.

On the other hand, certain chips are sensitive to the ACK timing.
An extreme example is the Intel chips. We found Intel chips can only
detect ACK frames transmitted within a very short time (ideally just
less than 10µs). The timeout specified in the standard is determined
by the reception of the ACK header, not by the start of the ACK
preamble. So, we can, in theory, start the preamble late but transmit
less scrambled 1’s to meet the deadline. However, such a design has
little effect with Intel chips. Without detecting the ACK, the Intel
chip re-transmits the same packet over and over again, essentially
reducing the goodput to 0.

We, therefore, design a general solution that allows FLEW to
meet the timing requirement of all WiFi products we tested. Our
solution leverages the facts that a) the tail of WiFi packets is the
4-byte FCS and not the actual payload, b) higher layer either has
additional error checking (e.g., TCP, even UDP, has checksums), or
naturally anticipates occasional errors. Specifically, we terminate
the reception after receiving 1 byte of FCS, thus reserving more
time for the FSK chip to transition to transmit mode for ACK. The
1 byte of FCS is still used to check the integrity of the packet and
determine whether an ACK packet should be transmitted.

An alternative design is only acknowledging the retransmitted
packets and performing a full FCS check on the first packet. How-
ever, this will decrease the throughput by half due to re-transmissions.

Since ACK packets are always the same for a given (source) MAC
address, instead of generating the ACK on the fly, we pre-generate
the ACK bits before sending the authentication packet to the AP
and re-use those ACK bits for all subsequent packets. We choose
this time instance since the authentication packet signifies an FSK
chip’s intent to join the AP’s network, and the FSK chip is expected
to acknowledge traffic from the AP afterwards.

In the opposite direction, once FLEW sends a normal packet, AP
should transmit an ACK packet. We use this packet to implement
the re-transmit logic. Specifically, once a packet is sent, FLEW turns
the FSK chip into receiving mode immediately. If a valid ACK is
received, FLEW releases the transmit buffer, turns the chip into
receiving mode and copies more data from the upper layer. If no
packet is received after a timeout, FLEW re-transmits the packet.
If a unicast (to FSK) packet is received, this indicates that the AP
and the FSK chip might be transmitting simultaneously. In such
a case, FLEW instructs the FSK chip to acknowledge the incoming
packet, does not release the transmit buffer, and turns the chip into
receiving mode for more incoming packets.

We noticed that the RTS-CTS mechanism is enabled by default
on some APs. Thus, we also implement that mechanism. This is
important for those APs since without receiving CTS, the AP will

constantly re-send RTS without sending any data. The implemen-
tation of RTS-CTS is mostly the same as ACK handling, since CTS
is also expected to be transmitted one SIFS after RTS.

Idle

Tx

Rx Packet

!txnext

txnext

Tx == Probe Request / txnext = 0,

txpending = 0, txfinished = 1

RxTimeout

txpending & Timeout txfinished /

Copy data to Tx,

txfinished = 0

Carrier high /

Reset timer

Carrier low /

txnext = 1

Carrier high /

Reset timerTimeout

Carrier Low

!txfinished /

txpending = 1

SFD detected

SFD

detected

Rx == ACK /

txnext = 0,

txpending = 0,

txfinished = 1

Rx == RTS

Rx == CF-End or

PLCP Header

error

FCS check

passed

Idle

- / txnext = 0

Timeout

Rx

Tx ACK

Tx CTS

Figure 7: FSM

2.5.3 Timing and FSM. We can now put all components together
and design the main control logic, which can be simplified as a
Finite State Machine (FSM), shown in Fig. 7. Once in Idle state,
FLEW transitions to either Tx or Rx immediately, depending on the
value of txnext. Rx indicates that the FSK chip is in receive mode,
but the SFD (0x05AE4701) is yet to be detected. The CSMA/CA is
implemented in this FSM because the only way that txnext changes
from 0 to 1 (thus initiating a new transmission), is that a) the FSK
chip is in Rx and reaches timeout, b) noWiFi packet is detected, and
c) no carrier is present in the medium. txnext turns to 0 or remains
unchanged (e.g., during re-transmission) for all other paths.

The Rx Packet state indicates that a WiFi SYNC is detected and
the FSK chip is actively collecting the data. Depending on the packet
type, transmission of ACK or CTS may follow. In the case of packet
errors, either in the PLCP header or the data field, FLEW goes to Idle
and restarts the process.

3 IMPLEMENTATION
3.1 Hardware and Firmware
We use COTS FSK chips to implement FLEW. In particular, we use
Ubertooth [14] as the underlying hardware. At its core, Ubertooth
uses TI’s CC2400 [15], which is a standard FSK chip designed for
low-power, low-voltage applications. The CC2400 family is also
widely used in wireless sensor networks (WSNs), which require con-
siderably lower power consumption thanWiFi networks. Ubertooth
was originally conceived as a Bluetooth and BLE debugging tool.
With an appropriate firmware, it can communicate with Bluetooth
and BLE devices. For this purpose, an optional radio front-end is
hard-wired to CC2400, although it is not necessary for the operation
of CC2400.

Ubertooth uses NXP’s LPC1756 [16] as the main MCU, which
also acts as a bridge between the USB and CC2400. The MCU is
down-clocked to 88MHz via the built-in PLL. We use the LPC1756’s

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

SSP module to transmit the DSSS bits into CC2400’s mixers. The IO
pins of LPC1756 run at 3.3V whereas the core voltage of CC2400
is 1.8V. We thus use two resistors to convert the voltage. We tie
the inputs to I and Q mixers together and with voltage conversion,
3.3V corresponds to 1 and 0V corresponds to -1 to the mixers in the
constellation plane.

LPC1756 has an ARM Cortex-M3 core and we implement the
FSM using C codes. Our custom firmware also handles the USB traf-
fic and controlling CC2400 via SPI commands and hardware pins.
Outgoing packets arrive at LPC1756 in the form of PSK bits, encap-
sulated in USB packets. The SSP module either sends 10110111000
or 01001000111, depending on each PSK bit. For reception, LPC1756
performs descrambling and FCS check in real time using the Cortex-
M3 core. If the check passes, the transmission of ACK is directly
initiated by LPC1756. Complete WiFi packets are sent to the host
via USB packets.

3.2 WiFi Driver
We write a custom driver (a Linux kernel module) to interface FSK
chips to mac80211, which sits on top of WiFi drivers in modern
Linux WiFi architecture. Our custom driver is a very thin layer
(less than 1k lines of code) that handles various mac80211 function
calls, most notably ieee80211_tx and ieee80211_rx. The driver also
manages a queue that buffers outgoing packets. Packets are popped
off from the queue sequentially. The driver then converts the packet
to WiFi PSK bits by adding the PHY header and FCS, scrambling the
entire packets and applying differential codings. All these steps are
simple bit operations and do not require any floating-point or DSP
computation. For received packets, the driver polls USB packets
and checks the FCS of the WiFi packet. If the check passes, the
driver passes the packet to mac80211.

Even with such a small footprint, our driver supports monitor
mode and packet injection. Furthermore, we ensure that the driver
does not drop packets even when they are injected at the maxi-
mum speed, unlike certain other (most notably Realtek and Ralink)
drivers.

It is possible to reuse existing WiFi drivers instead of writing a
custom one. Such a design is only implementation variations and
is not our focus.

3.3 MLME, WiFi Security and Upper Layers
We write the driver and the firmware in such a way that they can
directly work with unmodified mac80211 and upper layers. WiFi’s
MLME (MAC subLayer Management Entity) operations, such as
scanning via Probe Requests, authenticating and associatingwith an
AP, are already implemented in mac80211. IP/ICMP and TCP/UDP
have already been implemented in the Linux kernel. Many Linux
(and Android) distributions come with wpa_supplicant, the de facto
open-source WiFi security implementation. All these components
work without modification. Therefore, the Internet works out-of-
the-box once the driver is implemented.

4 EVALUATION
The evaluation of FLEW can be divided into physical-layer and
system-level evaluations. The former measures the physical-layer
performance, such as PER (Packet Error Rate), in eitherWiFi-to-FSK

or FSK-to-WiFi direction. Since we need to monitor the PHY traf-
fic for physical-layer evaluation, these experiments are conducted
with several WiFi NICs operating in monitor mode. Although these
PHY metrics provide insights into synchronization, modulation
and demodulation performance, such constant unilateral traffic
never exists in real WiFi operations. Specifically, WiFi data packets
must be acknowledged using ACK packets in the opposite direction.
Therefore, the end-to-end performance depends on the PHY perfor-
mance in both directions. Furthermore, the MAC layer also affects
the end-to-end performance since wireless devices use a shared
medium. Therefore, for system-level evaluation, we test FLEW with
real WiFi APs and measure performance at the transport layer,
which represents a more realistic performance characterization in
the real world. The transmit power of FLEW is set to 20dBm for both
evaluations.

4.1 Experimental Setup

Table 2: WiFi chips and APs used in experiments.

Chip
Maker

PHY
Evaluation System Evaluation

Atheros AR9462 GL.iNet GL-AR150 (AR9331)
Broadcom BCM4313 ASUS RT-AC66U (BCM4331)
Ralink/
Mediatek RT3072 TP-Link TL-WR841N

(MT7628NN)
Marvell - Linksys EA3500 (88W8366)

Intel AC 7260 TP-Link Archer AX3000
(WAV654A0)

Realtek RTL8811AU D-Link DIR-619L (RTL8192ER)

To test the performance and compatibility, we comprehensively
evaluate FLEW with numerous commodity WiFi APs and devices
with chips from all major WiFi chip-makers. The tested devices and
chips are listed in Table 2.

(Qualcomm) Atheros and Broadcom3 have long been consid-
ered industry leaders and each has a full WiFi portfolio from low-
cost 1T1R to high-end, enterprise-grade chips. The overwhelming
majority of Apple’s products uses Broadcom’s WiFi chips.
Ralink/Mediatek4 chips are commonly found in low-cost APs.
Note that Qualcomm andMediatek SoC are widely used in high-end
and low-cost Android smartphones/tablets, respectively. Therefore,
although smartphones are not the main focus of FLEW, testing these
chips ensures the compatibility of FLEW with the majority of smart-
phones. For example, we have verified that FLEW works with an
unmodified iPhone acting as a WiFi hotspot.

Marvell5 chips are mainly used in niche markets (high-end or
enterprise APs) and are rarely used as general NICs nowadays. They
lack Linux drivers or the drivers do not support monitor mode. So,
we evaluate their performance at the system level. Marvell chips are
commonly found in Cisco’s 802.11ac APs, although Cisco’s newer
APs use Qualcomm chips. We use a Linksys EA3500 (which was
launched during the Cisco era and internally uses a Cisco PCB) to
3Broadcom sold part of its WiFi portfolio to Cypress
4Mediatek acquired Ralink in 2011
5Marvell sold its WiFi portfolio to NXP

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

evaluate the performance. On the other hand, Intel and Realtek
chips are mostly used in client NICs and have much less presence
in APs. Even so, we include their results for completeness.

In what follows, we refer to each systemwith itsWiFi chip-maker.
We do not modify the WiFi devices. In fact, we use the original
firmware supplied with each equipment and we do not flash any
new firmware. For WiFi APs, we use their browser interface to
configure the WiFi channels and WiFi passwords. We use WiFi
channel 4 and all APs use WPA2-PSK, unless specified otherwise.

4.2 PHY Layer and PER

Table 3: PER Evaluation (%)

Direction WiFi-to-FSK FSK-to-WiFi
Distance 5m 10m 20m 5m 10m 20m
Atheros 1.93 1.46 2.29 0.00 0.02 0.07
Broadcom 3.10 3.15 2.59 0.27 0.78 0.17
Ralink 3.56 4.88 4.22 0.63 1.32 5.83
Intel 5.59 3.03 2.49 2.39 2.17 1.90
Realtek 3.32 4.47 4.69 6.52 8.54 8.86

We evaluate the PHY performance in both FSK-to-WiFi andWiFi-
to-FSK directions. The transmitter (either FSK orWiFi) continuously
sends a 1508-byte (1512-byte including FCS) packet to the receiver.
For all (including FSK) receivers, all 4 bytes of FCS are received and
compared; FCS-error frames, if any, are discarded. Since 4 bytes of
FCS are used, it is practically impossible (1

232 = 2.33 · 10−10) for an
error frame to have the correct FCS.

To measure the PER, the transmitter marks these packets with
unique sequence numbers.We iterate all possible sequence numbers
and thus 4096 packets are sent for each test. We collect the sequence
numbers of packets received at the other end. Because the sequence
numbers sent are unique, any number missing within [0, 4095]
indicates packet losses/errors.

Table 3 shows the PER in the WiFi-to-FSK direction. For signal
transmission, the Atheros chip shows superior performance.We use
exactly the same set of typicalWiFi antennas for Atheros, Broadcom
and Intel chips, and their performance is largely the same. Even
at 20m, the PER is around 2.5% or lower. For Broadcom and Intel
chips, the PER actually increases slightly with shorter distances.
This may be because the signal is slightly stronger than the optimal
ranges, and they potentially have a slightly less accurate waveform.
It is possible to further tweak the AGC (Automatic Gain Control)
in the FSK chip, instead of using the default values, to extend the
optimal range. For Ralink and Realtek chips, the NICs are in the
USB form (since the mini PCI-E versions are hard to find). Because
of the form factor limitation, USB NICs typically do not have the
best performance, as evident in the table. FLEW still achieves a PER
of less than 5% at 20m. Although Realtek chips do contain the SYNC
length bug, to the FSK chip, this bug only affects the packet format
and should be mostly unrelated to the PER.

Table 3 also shows the PER in the FSK-to-WiFi direction. The
Atheros chip again shows phenomenal performance. At a distance
of 5m, it is even possible to achieve 0% PER. Even at 20m, the
PER is still much less than 1%. The Broadcom chip also has great

performance with less than 1% PER under all conditions. For the
Ralink chip, we believe the performance is mostly limited by the
USB form factor, and thus the PER steadily increases with distance.
The Realtek chip has the worst receiving performance among all
chips (including receiving using FSK chips!), which may be partly
contributed by its tiny USB form factor. It is also possible that bugs
in Realtek chips affect the performance (e.g., expecting 126 bits of
SYNC instead of 128 bits).

4.3 TCP/UDP Throughput
For system-level evaluation, wemeasure the transport-layer through-
puts with unmodified WiFi APs. We use iperf3 [17], the standard
tool for measuring network performance. An iperf3 server is either
run on the AP itself (Atheros), or on a host connected (via LAN)
to the AP (Broadcom, Ralink, Marvell, Intel, Realtek). At the other
end, a Ubuntu laptop with FLEW driver installed is running an iperf3
client. The laptop connects to these APs via the FSK chip. We mea-
sure both TCP and UDP throughputs in both directions with the
following commands:

TCP Uplink: iperf3 -c <server's IP>
UDP Uplink: iperf3 -c <server's IP> -u
TCP Downlink: iperf3 -c <server's IP> -R
UDP Downlink: iperf3 -c <server's IP> -R -u

We record the throughput reported by the receiving end.
Table 4 shows the uplink throughputs at different distances. All

AP chips of four popular chip-makers (Atheros, Broadcom, Ralink,
Marvell) have similarly good performances. The Atheros chip is
still slightly better than others. UDP throughputs are higher than
TCP throughputs as TCP requires additional TCP ACKs sent at the
transport layer. To the physical layer, these TCP ACKs are simply
packet payloads traveling in the opposite direction. Although it is
redundant to have ACKs at both the physical layer and the transport
layer, it is the way the Internet works. Because WiFi is half-duplex,
these TCP ACKs consume some bandwidth, and thus decrease
the “real” throughput. In addition, these TCP ACKs create more
contention as the AP now also tries to access the channel to transmit
TCP ACKs. Nevertheless, FLEW’s CSMA/CA works well and the
throughput is only 5∼10% lower. The Intel chip has equally good
performance but is less stable at longer distances.

The only outlier in the uplink experiments is Realtek. This may
be attributed to its inferior receiving performance, potentially due
to the SYNC or other bugs. We would like to stress that Realtek
chips are much less commonly used in commodity APs, and are
especially rare in enterprise APs. They can still sustain a transport-
layer throughput of at least 350kbps.We leave specific optimizations
for Realtek chips as future work.

Table 4 also shows the downlink throughputs. Downlink through-
puts are, in general, higher than uplink throughputs because, in the
FSM (Fig. 7), a small amount of time is spent on copying transmit
data between each transmission. That is, even if the channel is
clear/available, the FSK chip will not transition to Tx mode if the
data is not ready. This design simplifies the re-transmit and USB
logic, but the throughputs are slightly lower due to unused airtime.
The difference is smaller for TCP because the unused airtime can
be reclaimed by the AP to transmit TCP ACKs.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Table 4: Throughput Evaluation (kbps)

Direction Uplink Downlink
Transport TCP UDP TCP UDP
Distance 5m 10m 20m 5m 10m 20m 5m 10m 20m 5m 10m 20m
Atheros 646 661 671 721 700 697 766 771 768 839 840 857
Broadcom 616 602 654 697 698 697 703 686 707 813 818 800
Ralink 654 639 615 695 692 708 767 749 734 846 842 834
Marvell 645 636 656 693 701 698 679 678 694 792 803 791
Intel 651 636 471 699 578 673 743 721 586 811 814 816
Realtek 350 357 449 375 346 386 588 525 544 700 658 667

Downlink has a similar trend to uplink. The first four chip-
makers havemost consistent results across different distance ranges.
The Intel chip can be equally good but is less consistent. The Re-
altek chip performs much better, since downlink involves mostly
transmission, but is still inferior to other chips.

Unlike uplink, downlink throughputs show higher variations
among different chip-makers. For example, Atheros and Ralink
chips consistently outperform Broadcom and Marvell chips. We be-
lieve the rate adaptation algorithms (RAAs) used largely contribute
to this since Atheros and Ralink (and even Intel) have their own
proprietary RAAs [18–20]. When data packets are sent by the AP,
the AP may briefly try a different rate before falling back to 1Mbps.
These RAAs seem to better balance the throughput and exploration
of other rates. As discussed in Sec. 1, using 1Mbps allows RAAs to
converge and not diverge or cause disconnection. Even at distance
of 20m, FLEW stays connected throughout all the experiments.

4.4 RTT

0 1 2 3 4 5 6 7 8 9

Time (s)

4

6

8

10

12

14

16

18

20

R
T

T
 (

m
s
)

Atheros

Broadcom

Ralink

Marvell

Intel

Realtek

(a) LAN

0 1 2 3 4 5 6 7 8 9

Time (s)

10

12

14

16

18

20

22

24

26

R
T

T
 (

m
s
)

Atheros

Broadcom

Ralink

Marvell

Intel

Realtek

(b) WAN

Figure 8: RTT

We also measure the round-trip time (RTT) of each setting. Fur-
thermore, we measure the RTT over both LAN and WAN. For LAN,
we ping the AP to which the FSK chip is connected. For WAN,
we connect the AP to the Internet and FLEW tries to ping 8.8.4.4,
Google’s public DNS server.

For each system, we perform 10 pings. We measure RTTs at 20m,
since the RTTs of shorter distances are largely the same as those of
20m. Even at 20m, no ping was lost for every configuration.

Figs. 8a and 8b plot the measurement results. Atheros, Broadcom
and Marvell generally have the lowest RTTs. Intel and Ralink lag

behind, but their RTTs are still stable. Realtek has the worst RTTs
that jump all over the place. This can be partly attributed to Realtek
chips’ non-ideal wireless performance. WAN RTTs are mostly the
same as LAN RTTs. The only difference is the ∼6ms delay for
traveling across the Internet.

4.5 Coexistence

Table 5: Coexistence with multiple WiFi devices (bps)

of Devices TCP UL UDP UL TCP DL UDP DL
1 FLEW 663 k 708 k 730 k 841 k

2 FLEW 412 k 698 k 293 k 603 k
AC7260 13.1 M 1.05 M 25.0 M 1.05 M

3
FLEW 123 k 676 k 117 k 517 k
AC7260 10.5 M 1.05 M 19.8 M 1.05 M
AR9271 19.3 M 1.05 M 11.5 M 1.00 M

4

FLEW 92.7 k 616 k 178 k 504 k
AC7260 8.27 M 1.05 M 12.5 M 1.06 M
AR9271 7.73 M 1.05 M 6.2 M 1.04 M
RTL8811AU 10.9 M 1.05 M 12.5 M 1.05 M

5

FLEW 90.9 k 621 k 166 k 580 k
AC7260 6.98 M 1.05 M 10.3 M 1.05 M
AR9271 1.95 M 1.05 M 3.09 M 1.03 M
RTL8811AU 2.80 M 1.05 M 10.4 M 1.05 M
BCM43602 15.2 M 1.05 M 7.12 M 1.05 M

4.5.1 Coexistence with WiFi Devices. To evaluate FLEW’s perfor-
mance when it coexists with other WiFi devices, we also use iperf3
to measure the performance when up to 5 WiFi clients are simulta-
neously sending or receiving data. To accommodate multiple iperf3
connections, multiple iperf3 servers simultaneously run on the
Atheros AP and listen on different ports.

Table 5 shows the results. By default, iperf3 injects UDP data to
and from each client at around 1.05Mbps. In these cases, the channel
is not saturated and all clients access the channel efficiently. For
UDP uplink, the throughput of FLEW does not decrease much, indi-
cating that the MAC layer of FLEW functions properly and allows
different WiFi clients to access the spectrum efficiently. Through-
puts decrease more for downlink, which may be due to slight delays
for a single AP to prepare and send multiple streams.

For TCP, iperf3 injects the data at the maximum speed, which
saturates the channel. In these situations, any throughput gain at

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

one client comes at the expense of the throughput decrease at an-
other client. For FLEW, throughput decreases are more pronounced
as 2 or 3 devices coexisting and plateau out as more devices are
added. We believe that from FLEW ’s perspective, interference in-
creases drastically from 1 to 2 or 3 devices. Although interference
does continue to increase for more devices, the increase in ratio is
comparatively lower. We observe that even though WiFi devices
follow the WiFi MAC standard, throughput imbalance still occurs,
even among COTS WiFi cards from different vendors, when the
WiFi channel is saturated to the max. Therefore, we conclude that
the WiFi MAC alone cannot guarantee a perfect throughput distri-
bution among WiFi terminals in practical wireless environments.
However, the key takeaway is that even under saturation, through-
put of FLEW does not starve to 0 and is still sufficient for many IoT
applications. Furthermore, a WiFi channel may only truly saturate
occasionally during bursty data transmission. In such cases, FLEW
can still provide decent overall throughput by utilizing the channel
idle time.

A fairer throughput distribution can be achieved by rate limiting
or a better load balancing at the AP. Alternatively, PCF can be
used to allow the AP to arbitrate the traffic and eliminate spectrum
contentions. It is also possible to fine-tune the MAC layer to access
the spectrum more aggressively. We leave these as future work.

Table 6: Throughputs with multiple FLEW devices (kbps)

of Devices TCP UL UDP UL TCP DL UDP DL
1 FLEW #1 663 714 753 833

2 FLEW #1 357 385 390 295
FLEW #2 358 386 307 396

Table 7: Coexistence with background BT traffic (kbps)

of BT Devices TCP UL UDP UL TCP DL UDP DL
0 655 715 761 819
1 667 716 758 820
2 650 714 748 821

4.5.2 Coexistence with FSK Devices. FLEW coexists with other FSK
devices well. Table 6 shows the results of multiple FLEW nodes
sending/receiving data simultaneously. For uplink, throughputs
are almost perfectly divided by multiple nodes, indicating that the
MAC layer design allows each node to access the spectrum equally
and efficiently. Furthermore, the aggregate uplink throughputs of
multiple nodes are slightly higher, which is a result of the utilization,
by the second node, of the small unused uplink airtime (described
in Sec. 4.3) of the first node. For downlink, the throughputs are split
in about 57:43 between nodes, which may be due to the different
channel conditions and packet processing in the AP. The aggregate
downlink throughputs of multiple nodes are slightly lower because
of more spectrum contention.

FLEW achieves excellent performance in the presence of coexist-
ing Bluetooth devices. We evaluate the performance of FLEW when
there are multiple Bluetooth connections in the background stream-
ing music. Table 7 shows that the throughputs of FLEW are virtually
unaffected by the number of Bluetooth audio streams in the envi-
ronment. We attribute this result to the frequency-hopping design

and the adaptive frequency-hopping mechanism in Bluetooth pro-
tocols. Specifically, Bluetooth transmitters are constantly switching
channels over the span of 79MHz, thus making a Bluetooth trans-
mitter unlikely to hop to the same frequency as the FSK chip. Fur-
thermore, Bluetooth systems use the adaptive frequency-hopping
mechanism, which automatically avoids Bluetooth channels within
active WiFi channels. Additionally, Bluetooth systems typically
operate at a lower transmit power, which, combined with robust-
ness of DSSS, mitigates the impact on WiFi performance even if a
collision does occur. Since FLEW uses the standard WiFi waveform
and WiFi MAC design (i.e., timing), the existing results of WiFi–
Bluetooth coexistence and interference-reduction mechanisms are
directly applicable to FLEW.

4.6 Mobile and Outdoor Environments

Table 8: Throughputs in mobile environments (kbps)

Condition TCP UL UDP UL TCP DL UDP DL
Stationary 641 700 682 809
Walking 651 642 673 747
Running 647 677 670 733

4.6.1 Mobile Environments. To evaluate the performance under
mobile conditions, we measure the throughputs when a person
with the FLEW terminal is walking or running back and forth to-
ward/away from the AP at a distance of 10∼15 meters. Interestingly,
Table 9 shows that mobile environments have more impacts on UDP
than on TCP throughputs, although UDP still has higher through-
puts. From the results, we conclude that the extra robustness and
throttling provided by TCP may mitigate the throughput variations
in certain conditions.

Further optimizations for mobile environments are possible. For
example, we use the default packet size, which has a relatively long
time duration. If shorter packets are used (e.g., by fragmentation),
the channel response may be more similar within the duration of
each packet, making it closer to the (piecewise) stationary condition.

Table 9: Throughputs in outdoor environments (kbps)

Distance (m) TCP UL UDP UL TCP DL UDP DL
25 654 661 734 821
50 646 702 731 844
75 652 709 761 862
100 674 716 739 828
125 652 710 719 763
150 677 710 610 689

4.6.2 Outdoor Environments. We also evaluate FLEW in practical
outdoor environments. Table 9 shows the performance in a typical
university campus environment with very few interference sources
around the Atheros AP. Uplink throughputs maintain consistently
good performance for at least 150m, which validates that FLEW
is ideal for IoT applications where sensor data travels in the up-
link direction. Downlink throughputs are consistently high within
100m and are reduced gradually for longer ranges, which is likely
a result of the higher PER. Even so, at 150m, throughputs of FLEW

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

in real-world outdoor environments are at least 2x the maximum
throughput of Zigbee. (In addition, Zigbee at 2.4GHz typically only
has a range of 10∼100m [21].)

Outdoor and industrial WiFi APs are allowed to transmit at a
higher power than indoor APs. For example, a typical Cisco outdoor
AP [22] has a transmit power of 30 dBm, which is at least 10∼12 dB
(corresponding to 3∼4x in range) higher than the AP we use. This
additional transmission power can significantly increase downlink
range. The Cisco outdoor AP also has a better sensitivity at -103
dBm. Therefore, we expect an even better performance when FLEW
is paired with APs designed for outdoor and industrial use.

4.7 Secured vs. Open Network

Table 10: Throughputs w/wo WPA2-PSK (kbps)

WPA2-PSK TCP UL UDP UL TCP DL UDP DL
Enabled 661 700 755 850
Disabled 676 697 780 858

All system evaluations presented so far are done with WiFi se-
curity (WPA2-PSK) enabled, since it is the recommended setting.
Enabling WiFi security incurs only a very small amount of over-
head. For example, WPA2-PSK incurs an overhead of 16 bytes per
packet, which is about 1% of a typicalWiFi data packet (∼1500 bytes).
Throughput may increase very slightly using open networks. Using
the Atheros AP as an example, we measure the throughputs with
and without WPA2-PSK and leave other parameters, including de-
vice placement, intact. Table 10 shows slightly higher throughputs
using open networks. In practice, other factors, such as background
traffic and interference, can easily outweigh the effect of WiFi se-
curity settings.

4.8 Application Examples
To the network stack and the AP, FLEW behaves just like a conven-
tional WiFi chip. Network applications can use FLEW for Internet
access without even recognizing the use of an FSK chip, instead
of a WiFi chip. General web browsing works normally as well. In
addition, FLEW can support streaming high-quality audio in real
time using Spotify. FLEW is also shown to be able to support stream-
ing 480p Youtube videos in real time. When little/no background
interference is present, it can even stream 720p Youtube videos in
real time. Higher resolution videos can be supported with enough
buffering (or potentially in real time with better video compression).

4.9 Power Consumption

Table 11: Comparison of power consumption

Idle (A) Tx (A) Rx (A) Rx-Idle (A)
AR9271 0.02 0.49 0.07 0.05
RTL8811AU 0.01 0.32 0.07 0.06
RT3072 0.04 0.28 0.13 0.09
FLEW 0.08 0.16 0.11 0.03

FSK chips are very power-efficient. CC2400 only draws 19mA
in transmit mode (at 0dBm) and 24mA in receive mode. For a fair

comparison (and since the transmit current of conventional WiFi
chips is typically measured at near 20dBm), we consider that an
external PA [23] is used, which is also the case in Ubertooth. The
external PA boosts the signal to 20dBm but draws 100mA (at 3.3V).
Even with the PA, the overall power consumption is considerably
lower than the WF200 in Table 1.

Table 11 shows the overall power consumption of different USB
WiFi cards, including Ubertooth with FLEW. We measure their USB
(5V) supply current when in idle, in continuous transmission or
reception of 1Mbps WiFi waveforms. FLEW has the lowest power
consumption in Tx mode. Ubertooth has a higher idle current, even
when CC2400 and the PA are turned off, than other WiFi cards. If
we adjust the Rx current with the idle current, FLEW also has the
lowest power consumption in Rx mode.

5 DISCUSSION
5.1 OFDM
The 802.11 standard has always stressed backward compatibility,
which enables FLEW to communicate with newer systems, even
though they might primarily use OFDM modulation. Specifically,
802.11g is a superset of 802.11b and 802.11a and the standard explic-
itly specifies that any 802.11g device should fully support 802.11b
operations. Similarly, the standard states that every 802.11n device
should also be an 802.11g device; every 802.11ax device should also
be an 802.11n device, etc. Therefore, even if new devices use OFDM,
they should still support FLEW operations. We have verified that
FLEW works with 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax
APs and devices.

Compared to OFDM waveforms, DSSS waveforms are more suit-
able for IoT applications, where device complexity, power consump-
tion and cost are more important than throughput. In addition,
DSSS waveforms are much more robust than OFDM (a 9dB [7]
higher link budget). OFDM waveforms are also known to have high
PAPR (Peak-to-Average Power Ratio), which prevents the use of
simple, power-efficient PA and LNA. In contrast, PSK waveforms
are generally considered as a form of constant-envelope modulation
since information is encoded entirely in the phase of the signal [24].
Therefore, DSSS is much more suitable for the PA and LNA inside
FSK chips, since FSK is also a constant-envelope modulation.

The data rate of 802.11b overlaps with common FSK data rates
(1Mbps), which allows FLEW to directly reuse demodulation hard-
ware, including the packet handling circuits, on common FSK chips,
thus enabling low-power operations. The data rate of WiFi OFDM
does not overlap with common FSK data rates. Consequently, the
demodulator and packet handling circuits on FSK chips are unlikely
to work with OFDM waveforms. Furthermore, processing OFDM
waveforms requires significantly more complex and power-hungry
circuits, including much wider radio front-end, faster A/D conver-
sion and FFT circuits. These essential OFDM building blocks are
simply not present on FSK chips.

Finally, we found that 802.11g/802.11n/802.11ac/802.11ax APs,
by default, use 802.11b waveforms to transmit beacons and manage-
ment frames. Therefore, even if there exists a solution that enables
FSK chips to receive/transmit OFDM waveforms, the support of
802.11b is still essential, especially if the APs cannot be modified.
In this regard, FLEW will still be integral in such solutions to handle

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Hsun-Wei Cho and Kang G. Shin

management functions, such as association with APs, and to ensure
maximum compatibility with unmodified WiFi devices.

From the practicality perspective, if existing devices already use
FSK, Bluetooth or BLE protocols, then the throughput of FLEW is
sufficient since FLEW matches their mandatory data rate. Thus, for
these devices, the benefits of OFDM waveforms are not critical,
especially considering DSSS waveforms are more robust and FSK
chips lack the OFDM building blocks.

The limitation of emulating OFDM mainly comes from the fun-
damental hardware limits of FSK chips. It might be possible to
use the radio circuits on FSK chips and emulate OFDM building
blocks in firmware using a high-speed micro-controller. However,
such a design would require a significant amount of computing
power and would likely require floating point units (FPUs). These
requirements will likely prevent the adoption of such a solution to
simple, low-power and low-cost IoT devices. In contrast, FLEW does
not require any floating point calculations. In fact, the Cortex-M3
micro-controller on Ubertooth is not equipped with any FPU.

5.2 Security Implementation
WiFi security algorithms can be implemented in software. However,
modern WiFi security frameworks (e.g., WPA2 and WPA3) use AES
and most CPUs (Intel since Sandy Bridge, AMD since Bulldozer,
modern ARM processors) support AES instructions. Many micro-
controllers, especially ARM TrustZone MCUs and even low-end
MCUs designed for IoT, also have hardware AES accelerators. These
AES hardware help efficiently encrypt and decrypt WiFi payloads.

6 RELATEDWORK
Multiple systems [25–28] have demonstrated the communication
from modified WiFi devices to Zigbee chips. However, they aim to
turn WiFi devices into a Zigbee transmitter, and in those systems,
Zigbee chips do not work as a conventional WiFi device.

Several prior studies explore communication frommodifiedWiFi
devices to Bluetooth/BLE devices. BlueFi [29] modifiesWiFi devices
to transmit Bluetooth signals, such as BLE beacons or audio pack-
ets. WiBeacon [30] modifies WiFi APs to transmit BLE beacons.
These systems only allow one-way broadcast (beacons) or one-way
unicast (audio) communication from WiFi to Bluetooth devices. In
addition, modifications must be made to the WiFi device. NBee [31]
shows the possibility of bit-level communication from 802.11b (with
QPSK formulation) to BLE receivers, NBee uses this to construct
the magic packets that a modified 802.11b transmitter should send
so that the BLE receivers can decode the packet as a normal BLE
packet. In contrast, FLEW analyzes BPSK waveforms and constructs
a fully functional 802.11b receiver for packets with arbitrary pay-
loads, transmitted by unmodified WiFi transmitters. In addition,
FLEW presents a general model of FSK demodulation and we show,
with theoretical insights and simulations, how such a communica-
tion will work on the general, architectural level. The core analysis
in NBee is under the condition of BLE receivers being tuned to
the same frequency as the WiFi channel. FLEW uses a frequency
offset and we explain, with theoretical reasoning, why such an
offset plays a critical role in converting DSSS to PSK waveforms
and in demodulating DBPSK waveforms with FSK circuits. With
the general FSK receiver model, the WiFi-to-FSK result only holds

when the frequency offset is introduced. FLEW also demonstrates
how the packet handling hardware on FSK chips can be used to
detect and efficiently decode conventional WiFi packets, not just
certain packets that are precoded in the BLE form. FLEW also ad-
dresses the subtle issues of waveforms transmitted by differentWiFi
chips, such as the bug of Realtek chips. NBee only evaluates the
performance using USRP whereas FLEW extensively evaluates the
performance with real, unmodified WiFi chips from all major WiFi
chip makers. Therefore, FLEW targets a very different use-case and
presents a practical design and results under real-world conditions.

Although another prior work [32] does enable bi-directional
communication between SDR-emulated WiFi devices and modi-
fied Bluetooth devices, not only does it require modifications to
both Bluetooth and WiFi devices, it also does not validate the run-
ning of such a method on real commercial WiFi chips (instead
of SDR devices). Moreover, a custom encoding is used on top of
Bluetooth modulation, thus significantly reducing its throughput.
All these systems aim to use WiFi to transmit Bluetooth wave-
forms and their Bluetooth devices do not operate as a conventional
WiFi client. Their Bluetooth devices can only receive WiFi pack-
ets with specifically-crafted payloads. Inter-scatter [33] enables
bi-directional communication between a backscatter, which uses
a modified Bluetooth transmitter as the RF source, and modified
WiFi devices. It also requires the RF source to be placed very close
(<1m) to the backscatter.

BlueBee [34] enables communication from modified Bluetooth
transmitters to Zigbee receivers and XBee [35] enables communi-
cation from modified (for generating access codes) Zigbee trans-
mitters to modified (for cross-coding) Bluetooth receivers. Zigbee
uses MSK [36], which is a special form of FSK. In contrast, WiFi
uses PSK with DSSS, which is much more different than FSK. In
addition, WiFi is 4x faster than Zigbee and it is theoretically impos-
sible (250kbps<1Mbps) for a standard Zigbee chip to receive WiFi
packets with arbitrary payloads. Therefore, their methods are not
directly applicable to our system. Furthermore, even at the transport
layer, FLEW is still much faster than Zigbee CTCs (250 kbps). XBee
configures the access address of BLE receivers to detect Zigbee
packets. The contribution of FLEW here is that we methodologically
find a specific SFD and show via extensive experiments that the
SFD works well for WiFi-to-FSK communication. In addition, the
process of selecting SFD in FLEW can be generalized for other WiFi
applications, such as reducing the interferences between WiFi and
FSK devices, or waking up WiFi receivers with BLE chips. These
contributions are very different from XBee, which is designed for
Zigbee-to-BLE communication.

7 CONCLUSION
We have presented FLEW that enables low-power FSK chips to di-
rectly communicate with unmodified WiFi APs. We have leveraged
several insights on FSK and WiFi modulation. We have evaluated
FLEW extensively to demonstrate its compatibility with chips from
all major WiFi chip-makers with good performance.

8 ACKNOWLEDGEMENTS
This work was supported in part by the NSF under Grant No. CNS-
1646130 and the ARO under Grant No. W911NF-21-1-0057.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

REFERENCES
[1] Wi-Fi Alliance. Wi-fi® in 2019. https://www.wi-fi.org/news-events/newsroom/

wi-fi-in-2019, Feb 2019.
[2] Silicon Labs. Wf200 data sheet: Wi-fi network co-processor. https://www.silabs.

com/documents/public/data-sheets/wf200-datasheet.pdf, Sep 2020.
[3] Texas Instruments. Cc2500 low-cost low-power 2.4 ghz rf transceiver. https:

//www.ti.com/lit/ds/swrs040c/swrs040c.pdf, May 2008.
[4] Texas Instruments. Cc2650 simplelink™ multistandard wireless mcu. https:

//www.ti.com/lit/ds/symlink/cc2650.pdf, Feb 2015.
[5] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal

Jackson, and Prabal Dutta. The internet of things has a gateway problem. In
Proceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, HotMobile ’15, page 27–32, New York, NY, USA, 2015. Association
for Computing Machinery.

[6] Cisco. Cisco wireless mesh access points, design and deployment guide, re-
lease 7.4. https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/7-
4/design/guide/mesh74/mesh74_chapter_011.html, Jun 2020.

[7] Cisco. Cisco aironet 2700 series access points data sheet. https:
//www.cisco.com/c/en/us/products/collateral/wireless/aironet-2700-series-
access-point/datasheet-c78-730593.html, Jul 2020.

[8] Texas Instruments. Cc2620 simplelink zigbee rf4ce wireless mcu. https://www.ti.
com/lit/ds/symlink/cc2620.pdf, Dec 2020.

[9] Atmel. At86rf233. http://ww1.microchip.com/downloads/en/devicedoc/atmel-
8351-mcu_wireless-at86rf233_datasheet.pdf, Jul 2014.

[10] Texas Instruments. Cc2652r simplelink multiprotocol 2.4 ghz wireless mcu.
https://www.ti.com/lit/ds/symlink/cc2652r.pdf, Mar 2021.

[11] Qualcomm. Csr8811. https://www.qualcomm.com/products/csr8811, 2021.
[12] Cypress. Cyw43012. https://www.cypress.com/file/497511/download, Jun 2020.
[13] Ieee standard for information technology—telecommunications and information

exchange between systems local and metropolitan area networks—specific re-
quirements - part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012),
pages 1–3534, 2016.

[14] Michael Ossmann. Ubertooth one. https://greatscottgadgets.com/ubertoothone/,
2021.

[15] Texas Instruments. Cc2400 2.4 ghz low-power rf transceiver. https://www.ti.
com/lit/ds/symlink/cc2400.pdf, Mar 2006.

[16] NXP. Lpc1756fbd80: Scalable mainstream 32-bit microcontroller (mcu) based
on arm® cortex®-m3 core. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-
m3/scalable-mainstream-32-bit-microcontroller-mcu-based-on-arm-cortex-
m3-core:LPC1756FBD80, 2021.

[17] iPerf. iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/,
2020.

[18] Duy Nguyen, J. J. Garcia-Luna-Aceves, and Cedric Westphal. Throughput en-
abled rate adaptation in wireless networks. In 2013 International Conference on
Computing, Networking and Communications (ICNC), pages 1173–1178, 2013.

[19] Electronic Products. Ralink premiers industry’s first 450 mbps
802.11n router solution with beamforming technology at ces 2009.
https://www.electronicproducts.com/ralink-premiers-industrys-first-450-
mbps-802-11n-router-solution-with-\beamforming-technology-at-ces-2009/#,
Jan 2009.

[20] Rémy Grünblatt, Isabelle Guérin-Lassous, and Olivier Simonin. Simulation and
performance evaluation of the intel rate adaptation algorithm. In Proceedings of
the 22nd International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, MSWIM ’19, page 27–34, New York, NY, USA, 2019.
Association for Computing Machinery.

[21] Connectivity Standards Alliance. Zigbee faq. https://zigbeealliance.org/zigbee-
faq/, 2021.

[22] Cisco. Cisco aironet 1570 series outdoor access point data sheet.
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1570-
series/datasheet-c78-732348.html, Mar 2021.

[23] Texas Instruments. Cc2591 2.4-ghz rf front end. https://www.ti.com/lit/ds/
swrs070b/swrs070b.pdf, Sep 2014.

[24] James E. Gilley. Digital phasemodulation. https://www.efjohnson.com/resources/
dyn/files/75832z342fce97/_fn/Digital_Phase_Modulation.pdf, Aug 2003.

[25] Zhijun Li and Tian He. Webee: Physical-layer cross-technology communication
via emulation. In Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking, MobiCom ’17, page 2–14, New York, NY, USA,
2017. Association for Computing Machinery.

[26] Zhijun Li and Tian He. Longbee: Enabling long-range cross-technology commu-
nication. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
pages 162–170, 2018.

[27] Yongrui Chen, Shuai Wang, Zhijun Li, and Tian He. Reliable physical-layer
cross-technology communication with emulation error correction. IEEE/ACM
Transactions on Networking, 28(2):612–624, 2020.

[28] Xiuzhen Guo, Yuan He, Jia Zhang, and Haotian Jiang. Wide: Physical-level ctc via
digital emulation. In 2019 18th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 49–60, 2019.

[29] Hsun-Wei Cho and Kang G. Shin. Bluefi: Bluetooth over wifi. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 475–487, New
York, NY, USA, 2021. Association for Computing Machinery.

[30] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He. Wibeacon: Expanding
ble location-based services via wifi. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, MobiCom ’21, page 83–96, New
York, NY, USA, 2021. Association for Computing Machinery.

[31] Lingang Li, Yongrui Chen, and Zhijun Li. Poster abstract: Physical-layer cross-
technology communication with narrow-band decoding. In 2019 IEEE 27th
International Conference on Network Protocols (ICNP), pages 1–2, 2019.

[32] Zhijun Li and Yongrui Chen. Bluefi: Physical-layer cross-technology commu-
nication from bluetooth to wifi. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 399–409, 2020.

[33] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and Joshua Smith.
Inter-technology backscatter: Towards internet connectivity for implanted de-
vices. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page
356–369, New York, NY, USA, 2016. Association for Computing Machinery.

[34] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li, SongMin Kim, and Tian He.
Bluebee: A 10,000x faster cross-technology communication via phy emulation.
In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
SenSys ’17, New York, NY, USA, 2017. Association for Computing Machinery.

[35] Wenchao Jiang, Song Min Kim, Zhijun Li, and Tian He. Achieving receiver-side
cross-technology communication with cross-decoding. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, Mobi-
Com ’18, page 639–652, New York, NY, USA, 2018. Association for Computing
Machinery.

[36] Mohammed Abdullah Zubair, Ajay Kumar Nain, Jagadish Bandaru, P. Rajalak-
shmi, and U.B. Desai. Reconfigurable dual mode ieee 802.15.4 digital baseband
receiver for diverse iot applications. In 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT), pages 389–394, 2016.

https://www.wi-fi.org/news-events/newsroom/wi-fi-in-2019
https://www.wi-fi.org/news-events/newsroom/wi-fi-in-2019
https://www.silabs.com/documents/public/data-sheets/wf200-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/wf200-datasheet.pdf
https://www.ti.com/lit/ds/swrs040c/swrs040c.pdf
https://www.ti.com/lit/ds/swrs040c/swrs040c.pdf
https://www.ti.com/lit/ds/symlink/cc2650.pdf
https://www.ti.com/lit/ds/symlink/cc2650.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/7-4/design/guide/mesh74/mesh74_chapter_011.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/7-4/design/guide/mesh74/mesh74_chapter_011.html
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-2700-series-access-point/datasheet-c78-730593.html
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-2700-series-access-point/datasheet-c78-730593.html
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-2700-series-access-point/datasheet-c78-730593.html
https://www.ti.com/lit/ds/symlink/cc2620.pdf
https://www.ti.com/lit/ds/symlink/cc2620.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-8351-mcu_wireless-at86rf233_datasheet.pdf
https://www.ti.com/lit/ds/symlink/cc2652r.pdf
https://www.qualcomm.com/products/csr8811
https://www.cypress.com/file/497511/download
https://greatscottgadgets.com/ubertoothone/
https://www.ti.com/lit/ds/symlink/cc2400.pdf
https://www.ti.com/lit/ds/symlink/cc2400.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/scalable-mainstream-32-bit-microcontroller-mcu-based-on-arm-cortex-m3-core:LPC1756FBD80
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/scalable-mainstream-32-bit-microcontroller-mcu-based-on-arm-cortex-m3-core:LPC1756FBD80
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/scalable-mainstream-32-bit-microcontroller-mcu-based-on-arm-cortex-m3-core:LPC1756FBD80
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/scalable-mainstream-32-bit-microcontroller-mcu-based-on-arm-cortex-m3-core:LPC1756FBD80
https://iperf.fr/
https://www.electronicproducts.com/ralink-premiers-industrys-first-450-mbps-802-11n-router-solution-with- \ beamforming-technology-at-ces-2009/#
https://www.electronicproducts.com/ralink-premiers-industrys-first-450-mbps-802-11n-router-solution-with- \ beamforming-technology-at-ces-2009/#
https://zigbeealliance.org/zigbee-faq/
https://zigbeealliance.org/zigbee-faq/
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1570-series/datasheet-c78-732348.html
https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1570-series/datasheet-c78-732348.html
https://www.ti.com/lit/ds/swrs070b/swrs070b.pdf
https://www.ti.com/lit/ds/swrs070b/swrs070b.pdf
https://www.efjohnson.com/resources/dyn/files/75832z342fce97/_fn/Digital_Phase_Modulation.pdf
https://www.efjohnson.com/resources/dyn/files/75832z342fce97/_fn/Digital_Phase_Modulation.pdf

	Abstract
	1 Introduction
	2 System Design
	2.1 Primer
	2.2 Overview
	2.3 WiFi to FSK
	2.4 FSK to WiFi
	2.5 FSM and MAC Layer

	3 Implementation
	3.1 Hardware and Firmware
	3.2 WiFi Driver
	3.3 MLME, WiFi Security and Upper Layers

	4 Evaluation
	4.1 Experimental Setup
	4.2 PHY Layer and PER
	4.3 TCP/UDP Throughput
	4.4 RTT
	4.5 Coexistence
	4.6 Mobile and Outdoor Environments
	4.7 Secured vs. Open Network
	4.8 Application Examples
	4.9 Power Consumption

	5 Discussion
	5.1 OFDM
	5.2 Security Implementation

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

