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Spatio-Temporal Capsule-Based Reinforcement
Learning for Mobility-on-Demand Coordination
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Abstract—As an alternative means of convenient and smart transportation, mobility-on-demand (MOD), typified by online ride-sharing
and connected taxicabs, has been rapidly growing and spreading worldwide. The large volume of complex traffic and the uncertainty of
market supplies/demands have made it essential for many MOD service providers to proactively dispatch vehicles towards ride-seekers.
To meet this need effectively, we propose STRide, an MOD coordination learning mechanism reinforced spatio-temporally with
capsules. We formalize the adaptive coordination of vehicles into a reinforcement learning framework. STRide incorporates spatial and
temporal distributions of supplies (vehicles) and demands (ride requests), customers’ preferences and other external factors. A novel
spatio-temporal capsule neural network is designed to predict the provider’s rewards based on MOD network states, vehicles and their
dispatch actions. This way, the MOD platform adapts itself to the supply-demand dynamics with the best potential rewards. We have
conducted extensive data analytics and experimental evaluation with five large-scale datasets (~27 million rides from Uber, NYC/
Chicago Taxis, Didi and Car2Go). STRide is shown to outperform state-of-the-arts, substantially reducing request-rejection rate and
passenger waiting time, and also increasing the service provider’s profits.

Index Terms—Mobility-on-demand, ride-sharing platform, human and vehicle mobility, coordination, smart transportation, reinforcement

learning, spatio-temporal capsule network, smart city

1 INTRODUCTION

CCELERATING urbanization and rising population have

led to a rapid growth of vehicle fleet size, making it
essential to tackle traffic congestion and air pollution prob-
lems. By integrating online information of traffic demands
and supplies, transit network operation and communication,
cooperative mobility-on-demand (MOD) systems, such as
Uber, Lyft, Didi and connected taxicabs, have created unpre-
cedented transportation alternatives. With an estimated
compound annual growth rate of 19.81 percent since 2017,
the value of global MOD market is expected to grow to
USD$276 billion by 2025 [1].

Given its significant economic and social values, we
must coordinate the MOD operations, i.e., dispatching
(matching) supplies—available vehicles/drivers—towards
(with) demands—passengers/requesters/riders. A coordina-
tion policy/strategy usually uses current observations to
determine where and when to relocate vehicles for maximiza-
tion of MOD service providers’ profit and satisfaction of
riders” desire/requirement. During each phase of coordina-
tion, the idle/vacant MOD vehicles are dispatched towards
different service zones (discretization of a city map), and
matched with their nearest requesters. The resultant rides
“connect” the zones and thus form an MOD network.
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However, increasingly complex urban traffic networks
and mis-coordination of demand-supply dynamics often
under/over-serve many service zones, thus degrading the
providers’ profitability, service quality, passenger satisfac-
tion and drivers” enthusiasm. As illustrated in Fig. 1, the
problem is particularly severe during rush hours when peo-
ple travel in similar directions between their home and work
or recreational/commercial zone. A survey of ride-hailing
customers in China [2] has shown that 81.7 percent of the
respondents experience more difficulties in hailing vehicles
in 2017 than in 2016, including up to 129.2 percent longer
waiting times. In 2019, Uber drivers in Seattle, Washington
report there were days they could spend up to 16 hours on
call in order to get a few passengers [3]. Despite numerous
efforts and enormous historical ride-data available, design-
ing an MOD coordination mechanism remains to be difficult
for the following reasons.

First, due to urbanization and MOD market expansion,
the static coordination based on old data in some zones can-
not be applied and scaled throughout the dynamically-
changing MOD network, thus calling for a new adaptive
mechanism. Second, coordinating complex MOD supplies
and demands exhibits sequential and long-term effects. A
single vehicle dispatching action may introduce profound
consequences to the environment and other vehicles, that
cannot be easily foreseen by a heuristic coordination mecha-
nism. Third, there usually exists multi-level periodicity within
traffic routines, commute patterns, annual festival events,
and ride preferences. The weather can also affect the ride
requests, which, for example, will surge during rainy hours.
Without comprehensive modeling of these factors, the con-
ventional coordination methods cannot easily and accurately
capture the repeating patterns.
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Recreational

Fig. 1. lllustration of MOD demand and supply. For example, on a week-
day morning there are more residence-to-work commutes while a week-
end night meets travels back to residence, leading to demand-supply
imbalance at origins/destinations.

We meet these challenges by proposing STRide, deep rein-
forcement learning (RL) based on spatio-temporal capsules for
coordinating the MOD network. Specifically, we design an RL
framework with a data-driven emulator, adjusting the coordi-
nation policy with an online self-adapting mechanism. A state
in this RL represents the spatial MOD demand, supply and
external temporal factors, and each action there represents the
zones to which vehicles can be relocated. The multi-objective
reward function characterizes the platform profitability, cost
and service coverage, whose long-term values are maximized
by STRide. The framework also takes into account the contex-
tual scopes of vehicles and travel time estimation to emulate a
fine-grained learning environment.

Since it is difficult to specify the long-term coordination
effects on future demands and supplies, we design a novel
capsule-based neural network to comprehensively learn the
relationship between observed states, coordination actions
and potential rewards. Conventional scalar-based machine
learning models like CNNs (convolutional neural net-
works) [4] communicate simply between two linked neurons
of consecutive layers with scalars. Different from them, cap-
sules, as structured groups of neurons [5] correlating the
reward distributions, outperforms the conventional scalar-
based neural networks by capturing the complex co-occur-
rence patterns of rewards at different zones of the city. A link
between two consecutive capsules is represented by a vector,
and such vectorized representation is propagated between
layers. Ride patterns, including spatial co-existence of multi-
ple demand surges during rush hours or rainy days, are
hence captured. Using capsules, STRide foresees an upcom-
ing demand-supply imbalance and proactively provides
learned decisions, achieving fine-grained coordination. It
incorporates the spatial demand-supply dynamics, temporal
external influence factors and ride preferences to capture the
complex periodicity in MOD ride demands. The optimized
coordination policy is stored in the capsule network for effi-
cient online use by service providers.

To summarize, this paper makes the following three
major contributions:

o  Comprehensive Learning Framework for Proactive & Effi-
cient MOD Coordination: We have formalized the
dynamic vehicle dispatching and rides matching into
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a spatio-temporal RL framework. STRide accounts
for spatial and temporal distributions of supplies and
demands, ride preferences and other external factors.
Using contextual scope processing and the learned
Q-network, STRide dispatches each participating
vehicle effectively and efficiently.

e Spatio-Temporal Capsule-based Policy Learning: Within the
RL framework, we integrate a novel spatio-temporal
capsule neural network, accurately and efficiently
mapping the observed MOD network states, vehicles
and dispatch actions to the provider’s rewards. This
way, STRide finds the spatio-temporally adaptive
coordination policy with the best platform profitabi-
lity, service quality, passenger satisfaction and driver
incentivization.

e  Extensive Data-driven Model Analytics & Evaluation:
Based on the above platform and framework, we
have conducted large-scale data analytics (a total of
27,612,831 rides) and comprehensive experimental
evaluation of STRide. Our results based on the data
sets of Uber/Yellow Taxis in New York City, Didi
in Chengdu, China, Car2Go in Turin, Italy, Taxis in
Chicago show STRide to outperform other state-of-
the-arts, lowering request rejection rate, and passen-
ger waiting time, and also enhancing the platform’s
profits.

STRide focuses on spatio-temporal configuration design
(prototyped with double deep Q-network [6] or double
DQN), but it can be integrated with other emerging RL mod-
els [7], [8], [9] for more advanced applications. Despite our
prototyped scope upon classical services like ride-sharing or
connected taxicabs, the spatio-temporal model can be easily
extended to vehicle dispatching/allocation in many emerg-
ing connected transportation and smart city problems [10],
including autonomous ride-sharing [11], rental car service
(like Enterprise Rent-A-Car and Zipcar), bus dispatching,
bike station reconfiguration [12], and charging dock deploy-
ment [13] for electric vehicles.

An earlier and shorter version of this work can be found
in [14]. Besides more elaboration on the core and implemen-
tation of STRide (Section 4) and discussions on practical
deployment (Section 6), this version expands and improves
it significantly in the following three perspectives:

1) More comprehensive data-driven studies on traffic
flows and rider preferences based on the MOD ride
data in Sections 2 and 3 (including Section 3.2);

2)  More design analysis studies (including model/set-
ting variations) and performance comparison with
many other state-of-the-arts in addition to the pre-
liminary results reported in [14] (Section 5).

3) More extensive and detailed experimental studies
(additional MOD datasets from Car2Go in Turin and
taxis in Chicago) (Sections 3.1 & 5).

The rest of our paper is organized as follows. We first state
the problem and describe the system in Section 2. Section 3
then presents STRide with a learning emulator, followed
by the core algorithm in Section 4. We present the experimen-
tal evaluation in Section 5, and discuss its deployment in
Section 6. We later review the related work in Section 7, and
finally conclude the paper in Section 8.
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TABLE 1
Major Symbols in STRide Formulation
Notations Definitions
R, K Numbers of zones and time intervals
k, m, M® Index of learning step, index and number of vehicles
s® Observation at time interval &
Uy Dispatch action space for vehicle v,,
fof) Long-term values of remaining steps for vehicle m
r,(ﬁ) T v,,'s reward value at step k and the policy
y Weight parameter on temporal proximity
H® A transition sample of consecutive states at k&
P® Earning score of v,, at interval k
w(i,7),I'(i,j)  Ride preference metric & relocation travel time of z; & z;
F® Relocation cost related to dispatching & idle driving time
fij Coupling coefficient between capsules ¢ and j
0;(-) Squashing function at the capsule j
e; Input to capsule j as the weighted average by f;;
9 Propagated prediction vector from capsules i to j
0ij Logarithm prior probabilities in the routing iteration

2 PROBLEM FORMULATION & SYSTEM OVERVIEW

We first present the preliminary concepts of STRide in
Section 2.1, and then the problem formulation in Section 2.2,
followed by the proposed framework in Section 2.3. We sum-
marize the important symbols used in STRide in Table 1.

2.1 Preliminaries

Zones, Rides & MOD Network. A large-area city map is dis-
cretized into R zones, Z = {zi,...,2zz}, while balancing
between coordination granularity and computation effi-
ciency. The shape and size of a zone can be subject to the per-
formance goal and platform customization. We discretize
the entire map into L,, x L, rectangular “zones”, the shape
of each of which may be altered to reflect the existence of
buildings, rivers, roads, etc.

Let T(i, j) be the set of directed MOD rides from z; to z;,
and T ={T(i,5); i,j=1,...,2zr}. The MOD network is
then a directed graph G(Z, T) and formed by the end-to-end
(e2e) MOD rides T across R different zones. The thus-
formed G(Z,T) serves as the environment of our coordina-
tion learning.

Discretization of Time Domain. The data structure for
STRide’s training is prepared by following the practice in
RL framework [15] and slicing ride records T (sorted by their
pick-up timestamps) into N, identical non-overlapping
chunks. Each chunk, or episode, is a time period within a day,
during which the MOD platform maximizes the financial

Fig. 2. Spatial distribution & heatmap frame of pick-ups.
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Fig. 3. Temporal distributions & weather conditions of a week.

returns. Simiarly to the map discretization, the time domain
of each trip chunk is discretized into Ny, equal intervals
(30 min each in our prototype). Each interval k € {1,..., K %
corresponds to a learning step. For each z; in a step k, let ng
be the number of aggregated pick-ups (requests).

Vehicles. Considering the connectivity of the MOD net-
work, the service provider monitors the status of A/ (k) partici-
pating vehicles in step k. Each of these vehicles, denoted as vy,
(me{l,....M (*) }), contains its unique identifier, the current
location (longitude and latitude loc; zone z;), availability
(vacant or not), and destination of ride/dispatch, if any. Each
vehicle is in one of the following 4 states: dispatching (relocat-
ing to another zone for potential pick-ups), matching (heading
to the pick-up location after accept), occupied (between pick-
up and drop-off), and vacant (staying in the same zone after
“dispatching” or “occupied” is over). Besides, each v,, is asso-
ciated with estimated time of arrival, ETA,,,.

2.2 Problem Formulation

Spatio-Temporal Features. Fig. 2 show the spatial (aggregated
rides from 00:00 to 12:00 on May 31, 2016; the warmer colors
indicate more pick-ups) of MOD rides (pick-ups/drop-offs)
in the NYC Taxi dataset. Fig. 3 shows (a) the temporal distri-
butions per 30 min of a day and (b) the daily proportion of
different weather conditions, both of which correspond to
the same week in May 2016. Most rides are shown to take
place during the rush hours around Manhattan and loca-
tions of recreation/interests like casinos and airports. We
also observe the complex multi-level periodicity (hourly,
daily and weekly) in the rides requested and served. Differ-
ent weather conditions may further alter and add complex-
ity to the ride periodicity. Fig. 4 further visualizes the
variations (in terms of totals and standard deviations) of
trips per day. Clearly, weekdays generally experience more
daily variations compared with weekends. Such spatial and
temporal dynamics call for the need of more comprehensive
learning of coordination.

Coordination Problem. Given the above spatial and tempo-
ral discretization and observations, we would like to proac-
tively decide on where and when each available vehicle
should be coordinated to serve ride requests so as to maxi-
mize the service provider’s profitability and passenger-per-
ceived service quality.

This problem is characterized with five major compo-
nents {S,U, 1,7, Q}:

a) State S: We assume that an MOD network or environ-
ment is coordinated by a web-based/online coordination

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 07,2022 at 02:22:07 UTC from IEEE Xplore. Restrictions apply.
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center, or an agent, connecting a large group of spatially-dis-
tributed vehicles and passengers with mobile apps. The
state space S'*) that the agent observed at the learning step
k consists of:

e MOD vehicles V: the 2-D (an L,,, x L,, matrix) distri-
bution of all vehicles v,,’s. From V, we derive the 2-D
distribution of vacant/available vehicles, denoted as
A. Both V and A capture the participating vehicles.

e  Departures/demands/pick-ups D: the 2-D location dis-
tribution (L, x L,) of requests or departures of
passengers.

e  External factors E: Since the different events (e.g., holi-
days or not), meteorological metrics (e.g., wind speed)
and weather conditions (e.g., rainy or snowy) affect
the demand/supply [16] as well as the resultant coor-
dination performance, we form them into an L,-D
vector as the additional hints for model training.

We model distributions of D, A and V into frames of
heatmaps (each is an L, x L,, matrix; warmer colors indicate
more passenger requests or vehicles) such that they can be
processed by our spatio-temporal learning algorithm as
input features. At each step k, we find the comprehensive
state or observation S"*) as the important spatial features
characterizing the MOD environment, i.e.,

S — {D(M,A(k),V(k),E(k)}. (1)

b) Action U: An action is a solution to a coordination
problem. The action space U, for each vehicle v,, is defined
as a set of discrete transits to any of its neighboring rectan-
gle zones, plus staying where it is. Let L be the number of
neighboring zones that a vehicle can relocate to (L. < R). For
each v,,, we consider U,, of size (L + 1) is centered at her/
his current zone, and d,,,; represents a destination zone [ rel-
ative to the current center. Then, the dispatch action space
for v, is

um = {dm,Ovdmlw'wdmlan '7dnLL}7 (2)
where d,,,( represents the action of staying where it resides.

¢) Reward t: Given the settings of states S and actions U,
each of M available vehicles dispatched by the agent,
arrives at the next state, and is returned with a value of
immediate reward,ie., S x U x S — R (tr € R).

Specifically, each vehicle (driver) m at learning step k is
associated with an instant reward function value (¥, z(¥)

takes into account the platform revenues and coordination
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cost (often subsidized by MOD service providers [17]), such
that maximizing individual rewards can also maximize the
platform profitability (Section 3.2). Driver incentivization
[18], [19] and passenger satisfaction are also figured in the
fine-grained multi-objective formulation.

d) Policy w & Long-term Value Q: Intuitively, the MOD
coordination actions have long-term effects upon the vehicle
distributions. STRide aims at maximizing the expected
reward in each episode, and mitigating the demand-supply
imbalance. In other words, a zone with long-term oversup-
ply would be considered less worthy (lower value) for a
vehicle to relocate to, while an under-served one counts
(higher value) due to more pick-up/earning opportunities.
From the platform’s perspectives, this coordination policy,
as a joint mapping function, not only predicts future
demand-supply gaps based on current market status, but
also yields the highest reward by relocating vacant vehicles.

Specifically, at each step k, we find the subsequent cumu-
lative returns based on a certain policy of coordination
S x U — m, with a weight parameter y € (0, 1) that differen-
tiates rewards in terms of temporal proximity. For each v,,,
at step k STRide expects the long-term values in the remain-
ing steps of the episode as

K ~ ~
QW) = () g U)oy Kl (K) Z yE ke ®),
ek
(3)
Then, the optimal value function Q’ (-) is the maximum
expected long-term reward of all candidate dispatch deci-

sions, i.e.,

Q*m(S(k)7u(k)) 2 max B {Q(k)m’S(k),U(k),n} @)

which fulfills the Bellman equation [15] for iterative learning
as: Q) (SW UV =

ES’ |:‘E£§> -+ Y max Qm(S’,Z,{/)
u/

S , u(k‘)} ; (5)

where &' and U’ represent the given state and action of subse-
quent step (k+ 1). Note that vehicles with the same spatio-
temporal states are considered homogeneous. In other
words, vehicles in the same zone and step (time interval)
share the same coordination policy and value function. Due
to the difficulty of specifying the sophisticated long-term
value Q, we design a spatio-temporal deep capsule network
as the Q-network (Section 4) to store policy 7.

2.3 System Framework & Flow

Fig. 5 overviews the STRide’s system design with two
phases: offline learning and online coordination. The entire sys-
tem consists of following 3 major components:

1) Feature Extraction & Processing: Given the MOD data of
rides from mobile apps and other external factors from the
MOD (online) environment (Section 3.1), STRide first
extracts features, structuring the batched data into states S
as Eq. (1) for ease of the following offline emulation and
model learning. The historical (offline learning) and real-time
(online coordination) external knowledge can be obtained via
weather station records or Internet [16].

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 07,2022 at 02:22:07 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5. The system framework of STRide.

2) Learning Emulator: In our RL design, the emulator [6],
[15] provides the offline and emulated environment derived
from real-world rides data and the city map for model train-
ing. Its design (Section 3.2) accounts for the ride preferences
and the contextual scope for each individual vehicle. Mean-
while, STRide finds the estimated time of arrival (ETA) for
each matching or dispatching transit. Note that the emula-
tor can be cold-started by several episodes of rides without
STRide’s coordination. Historical rides can also be fed for
offline learning to train an initial model of STRide.

3) STRide Model: The environment states, the agent’s coor-
dination actions and resultant rewards at each step are used to
train our deep capsule network model (Section 4.2) for policy
learning, minimizing the Q estimation loss. During model
training, the emulator is reset given each episode of rides data,
while the model is updated w.r.t. each learning step k.

After taking multiple steps, the reinforcement learning
module (double DQN in our prototype) in STRide learns the
coordination policy, and the STRide model is returned for
the next episode. The offline learning ends when all episodes
of data are examined. The learned capsule network returns
the enhanced policy and actions for online coordination, e.g.,
routing vacant vehicles to destinations via mobile apps.

3 DATA-DRIVEN LEARNING EMULATOR

Given the above concepts and system, we first present the
data sets in Section 3.1 and then describe the design of the
learning emulator in Section 3.2, followed by the emulation
process in Section 3.3.

3.1 Data Sets for Analytics & Evaluation
Our emulator is built for data analytics and performance eval-
uation based on the following five large-scale MOD datasets:

e  Uber, NYC [20]: The ride sharing data of Uber in New
York City (NYC), June 2015, contains a total of
2,816,895 rides covering the area of [40.60° N, 40.90°
N, -74.04° W, -73.75° W1.

o Yellow Taxis, NYC [21]: The ride data of Yellow Taxis
in May 2016 contains 11,588,760 rides, their pick-up/
drop-off locations and timestamps. According to
recent data-driven studies [22], taxis share many
similar characteristics with ride-sharing/ride-hailing
vehicles (e.g., demand market, service coverage and
trip length), making this feasible for mobility-on-
demand study.
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Hours of a day Value processing:

{01,2,... 23} * Categorical ({0, 1}):
Weekday (Mon to Sun): | binary/one-hot;
{1,2,...,.7} Non-categorical:

max-min normalized
into range between 0
and 1.

Holiday or not {0, 1} *

Temperature (celcius)

Cloudy or not

Windspeed (m/s)

Wind direction (deg)
{0, 10, ..., 350}

Sunny or not

Foggy or not

Weather| Relative Humidity (%)
(13-D) Hazy or not
Pressure (atm)
Misty or not
Sunrise/sunset time
Rainy or not

Weather condition vector

{0, 1} for each dim * Snowy or not

>

Fig. 6. lllustration of external factors & processing for E in our prototype
(total 16 dimensions).

e Didi, Chengdu, China [23]: The ride sharing data pro-
vided by Didi Chuxing [23], contains a total of
6,744,508 rides covering the area of [30.65° N, 30.73°
N, 104.04° W, 104.13° W] (with pick-up/drop-off
locations and timestamps) from the city of Chengdu,
Sichuan Province, China in November 2016.

e  Car2go, Turin, Italy: The ride data of the ride-sharing
service provider called Car2Go [24] contain 122,017
rides from September 1st to November 1st, 2017,
their pick-up/drop-off locations in the City of Turin,
Italy, covering the area of [45.1895° N, 45.0109° N,
7.7318° W, 7.6052° W1.

e Taxis, Chicago, IL: The ride data of the taxis [25] con-
tain 6,340,651 rides from March 1st to June 30th in
2016, their pick-up/drop-off locations and time-
stamps in the city of Chicago, IL, covering the area of
[41.6446° N, 42.0229° N, -87.9395° W, -87.5245° W].

For each of these datasets, we also include local weather

[26], weekday/weekend and festivals/events as the external
factors (E) in the model, as summarized in Fig. 6. We also
obtain the road network (street center lines) from OpenStreet-
Map (OSM) [27].

3.2 Design of Comprehensive Learning Emulator
Based on the above data sets, in order for STRide to com-
prehensively train and evaluate the learned coordination
policy model, we design and implement a data-driven learn-
ing platform that emulates the real-world MOD platform.
By feeding real-world historical MOD rides to the learning
emulator, STRide can model the spatio-temporal interac-
tions between supplies and demands, and find a better pol-
icy reflecting a practical setting. The operation of the MOD
agent (coordinator) is driven by its actual ride requests and
the demand-supply forecast, and updates the state when a
pick-up/request or drop-off/arrival event takes place.

Our emulator is designed with the following
considerations.

a) Contextual setting: A driver usually focuses on her/his
neighborhood observations or contexts for ease of (re)location.
The relocation policy for each vehicle is made fine-grained by
cropping and padding (zeros) [28] in the heatmap frames in &

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 07,2022 at 02:22:07 UTC from IEEE Xplore. Restrictions apply.
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S;

i

Fig. 7. lllustration of contextual scopes describing S, and action spaces
U of vehicles v, and v,.

such that the local scope S,, of each v,, (i.e., the observed con-
texts in its neighborhood) is centered around its current zone.
This way, STRide can learn the coordination policy based on
each vehicle’s neighborhood observations.

This also reflects the drivers’ tendency in (re)locating to
nearby zones (the search scope can be determined by sur-
veying drivers [29] and customizing the platform) for less
time/fuel consumption. STRide will also pay less compu-
tat1on overhead. At step k, we find the contextual scopes of
M®) available vehicles from the global state S in Eq. (2).
The state of each vehicle m to be dispatched is

={D, AR, Vi B (©)
Each of D%, AW and V¥ is cropped from S* into a sub-
frame of smaller size Ll/ x L (L < L, and L < L),

and centered at m’s current zone like U,,. E,,’f) is an
(Lext +2)-D vector consisting of Ley external factors and
vy's current 2-D location.

Using the above learning, STRide captures more fine-
grained market features in vehicles’ specific scopes instead
of looking at a single heatmap frame, and reduces the com-
putation overhead. Fig. 7 illustrates two examples of the
contextual scopes (each is 3 x 3). The background heatmap
(5 x 5) represents the spatial distribution of Q in a certain
step. We also show the action spaces (with dispatching
arrows; size may differ from S,,) of vehicles 1 and 2. One
may also impose a map constraint layer upon i, by forcing
the rewards associated with some d,,’s outside service
zones to be inaccessible (masked) by the vehicles (say, v, at
the peripheral of Fig. 7). This way, the area outside our tar-
get service zones will not be considered for coordination,
thus avoiding unnecessary computation.

In a sequential learning setting [15], we consider all idle
vehicles sequentially determine where to relocate to. Each
vehicle considers all other peers’ present status, while its
dispatch decision is independent of the peers’ next moves/
actlons [30]. In state Sm , Up's relocation to a neighboring
zone d ; at step k leads to a subsequent S*!) observation
and an instant reward t(*). Then, a tmnsmon sample H® of
consecutive states at k and (k+ 1) is given by

{S k) S (k+1) .L,(Ic)}7 (7)

m >’ ml7 v 'm

which is stored in the experience replay O and resampled for
further training of STRide model in Section 4.
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b) Multi-objective ride reward function: For each vehicle,
STRide accounts for the platform profitability (in proportion
to the vehicle’s earning), service coverage and configuration
cost in characterizing the agent’s reward function. Intuitively,
more rewards are expected if more ride fares are earned and
less time of dispatching /idle driving is consumed.

To accommodate this, we consider for each v,, in the kth
step two critical perspectives: earning score P\*) in terms of
fulfilled rides and revenues, and the relocation cost F¥
related to dispatching and idle driving time (and fuel con-
sumption). We adopt the vehicle-wise reward function since
in practice each driver of the MOD or ride sharing platform
have a smartphone app (like the component shown in the
bottom left of Fig. 5) which updates with service and demand
status. Each driver can access the knowledge of the platform
and the imbalance between the passenger demand and their
peer supply, and then make their decisions to fulfill their
pursuits of profits. This way, each driver’s incentive can be
further reflected, which has been discussed in [18], [19].

Then, v,,’s reward at step k is defined as the sum of earn-
ing scores minus the relocation costs in a window of w steps,
ie.,

k ~
we 3 (ar - £). ®
k=k—w

where @ > 0 is an adjustable parameter. In our prototype,
we empirically set w = 15. In other words, the more pick-up
revenues and the less relocation time and fuel consumption,
the higher reward a vehicle could achieve. The earning score
P% is defined as the weighted sum of serviced ride fares

m

among the zones based on the historical ride preferences
(i, j)'s, ie.,
R

R
Pr(ri£> £ Z Z m * €ij, (9)
i=1

J=1

m

zones i to j provided by v,,, and e;; is the resultant earning.
In our emulator prototype, the driver revenue or ride fare is
set as

where !T,U“)(i, j)| represents the number of actual rides from

€ij = a- (S” + b, a > 07 b > 0, (10)

where a is the unit price w.r.t. distance §;; and b is the base
price (our prototype uses the local ride rates [20], [23]).

) Ride preference & zone-to-zone connectivity: The drivers
and passengers usually have frequent travel patterns among
zones due to their commute routes and ride preferences.
Fig. 8 shows the ride distributions T(, j)’s from start to desti-
nation zones during two different time periods of a day
according to Didi Chengdu. Intensive morning flows (warmer
colors) among central and business city zones (indexed by 1 to
6 and 10) can be observed in Fig. 8a, while Fig. 8b shows more
flows among suburban city zones at night, indicating the spa-
tio-temporal change of MOD commute routes and ride prefer-
ences. In coordinating the MOD vehicles, ignoring such ride
tendency in coordination policy learning may discourage the
drivers and passengers, resulting in profit loss of the MOD
service. Therefore, we design a weighting scheme within
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Fig. 8. Ride distributions across zones (Nov 1, 2016; Didi): (a) 06:00 — 12:00; (b) 18:00 — 24:00. For ease of visualization, the Chengdu map is discre-

tized into 4 x5 rectangular zones based on local information.

STRide to account for the effect of historical spatio-temporal
ride preference [12], [31].

Considering the MOD network G connecting the zones Z
with rides T, inspired by the first-order proximity in network
embedding [31], we design a ride preference metric w(i, j) for
rides T(z, j) between z; and z; as

1

—— (11)
1+ exp(—cij . C]‘i)

(i, j) &

where the relative proportion of rides c;; is defined as a vector
of

T, )|
S [T R)|

B )|
Sy T K|

=AY
ij =

(12)

That is, the more rides recorded between z; and z;, the higher
o(1,7), indicating a stronger connectivity between the two
zones.

We incorporate the above ride tendency of zones into
STRide’s formulation, not relying only upon individually-
aggregated demand values. Our prototype discretizes each
day into four 6-hour periods, and aggregates rides of the
same period for different sets of w(i, j)’s. Then, to calculate
F#’f), we consider in Eq. (8) the relocation travel time I'(¢, ),
and the recent weight w(i, j) between z; and z; belonging to
the same historical periods (say, 06:00 — 12:00 of the same
weekday in its preceding week), and find the weighted sum of

(13)

where B > 0 is the unit cost related to the relocation time or
petrol prices [32] (say, a subsidy rate by the MOD platform for
dispatching [33]). Rides starting and ending within the same
zone, i.e., when i = j, are also considered within Eq. (11).

(1, j)’s, as the soft margins, help differentiate and cluster
different pairs of zones. In other words, STRide de-empha-
sizes the relocation cost between zones with high ride prefer-
ences and connectivities. The inner-rebalancing actions are
encouraged within these closely-connected zones, better
matching the MOD zone preferences as in Fig. 8. Relocating
between such highly-connected zones is more likely to gen-
erate more pick-up opportunities and much inner demand-
supply balance, thus reducing idle driving times in future.
Given the above considerations, the travel preference is

incorporated within the reward function modeling, achiev-
ing more fine-grained MOD coordination.

d) Estimated time of arrivals: For fine-grained evaluation,
the learning emulator also calculates the estimated travel
time between two locations for characterizing: (1) the time
of travel from current location to destination when passen-
gers are served (shown in Fig. 12); (2) the time of passenger
wait if vehicles and certain passengers are matched; and (3)
the time of idle driving if vehicles are dispatched to another
location for potential requests.

Specifically, we implement a random forest regression [34]
to estimate the travel time ETA,, between one location to
another given the input vector of start/end location coordi-
nates, length of the shortest path between them, day of a week
and hour/minute of a day belonging to the start time. The
length of interim road segments during the vehicle’s travel
are derived from OSM [27]. Our ETA model achieves a mean
error of 2.7 min over 30,000 validation rides from all datasets
(10,000 each). Despite our focus on designing a coordination
framework, other more advanced models for ETAs [35], [36],
[37] can also be integrated for better performance.

3.3 Emulation Process

Fig. 9 illustrates the time line inside the MOD emulation pro-
cess. Each episode consists of multiple learning steps. In each
step, STRide takes in the new MOD requests derived from his-
torical records. Given current vehicle status, STRide finds
the nearest driver-passenger matching, and updates the
vacant vehicle status. Then, STRide proactively conducts dis-
patching of the remaining idle ones towards zones of potential
demands based on the core Q-network. If a dispatching/
occupied vehicle arrives at its destination before another
request comes, it automatically becomes vacant and stays
there for the next coordination. After a pick-up, the vehicle
arrives at the destination in the actual time of the ride record.
After each step, STRide summarizes the rewards and vehicle
distribution for next-step model training. In the vehicle emu-
lation, the online/offline operations and the self-movements
of each vehicle (driver) are also fed to determine the available

| An episode |
| learning step 1 learning step 2 Ieammg stepK |
Vacant
New MOD Q-Network Rewards
Dispatchin
requests Matching Hvehicle status in agent p g
update

Fig. 9. MOD emulation process in one learning step of an episode.
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vehicles for redistribution and pick-up in different city zones,
which reflects the practical settings in the MOD platform
[19]. Algorithm 1 summarizes this MOD emulation process.

To balance between the learned policy (maximization in
Eq. (5)) and space exploration, STRide dispatches the
vehicles based on the e-greedy mechanism [15]. Specifically,
if the selected random variable is greater than a preset
threshold € € (0, 1), a vehicle is sent to the zone with maxi-
mum @, or will otherwise randomly explore one of the
reachable zones in U/ as its destination.

Algorithm 1. Emulation Process in STRide

Input: Rides T, external factors E, ETA model eta_mod.
Output: Updated Agent and environment Env.
1: Agent.reset(T,E); /* Initialization of the
agent */
2: for kin range(K) do
/* (1) Matching */
3: DW — 1cad rldes(T k);

4: M —min(len(D®), M); /* Feasible matched
number */
5. forw,, DW [l] in neares t_neighbors(A®, D® M) do
6: if dist(v,, D®[I]) < REJ_DIST then
7: ETA,, — eta_mod(v,,, D®[I]) /* Waiting */
8: Env.Match(v,,, DW[I], ETA,,);
9: A" — Env.Update(A®));
10: end
11: end
/i (2) Dispatching */
12: {d} < Agent get- action(D® AW VM E);
13:  forv,,, d,, in {d} do
14: ETA,, «— eta mod(vm, 7,,1) /*Reloc. time */
15: Env.Assign(@®,, d,., ETA,,); /* Dispatch
assign */
16: AP — Env.Update(A(k)); /* Update of
vehicles */
17:  end
18: end

4 CAPSULE-BASED COORDINATION LEARNING

Given the above emulator and settings, we first present the
motivations of our capsule network design in Section 4.1,
followed by the structures of the spatio-temporal coordina-
tion learning in Section 4.2.

4.1 Motivations

Characterizing Q, the relationship between states, actions
and long-term values, is essential for STRide to decide on
the best coordination policy = while adapting to the environ-
ment. Due to the complexity of large-scale MOD networks, it
is often difficult to specify the mapping representation. Fur-
thermore, the inherent relationship dynamically changes
over the time. Therefore, we design a novel spatio-temporal
capsule neural network as the deep Q-network [6] within
STRide, dynamically capturing and learning Q,,(S,,,Uy,).
That is, given state observations of S,,, we want to (i) accu-
rately predict the future distribution of Q,, values which has
the same dimensions as U/,,,, and then (ii) determine the better
neighborhood for coordination using e-greedy scheme.
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There are usually long-term coordination effect and
multi-level periodicity that cannot be easily learned by con-
ventional scalar-based models like convolutional neural net-
works (CNNs) [4], where two linked neurons of consecutive
layers communicate simply with a scalar. To address this,
we propose the use of capsule-based Q-network for more
comprehensive MOD coordination learning. A capsule is a
structured group of neurons [5], and many capsules can be
grouped together in one layer. A link between two capsules
in consecutive layers becomes a vector. Such vectorized
(instead of scalar) representation of data is propagated
between layers. Hence, more comprehensive ride patterns,
including spatial co-existence of multiple demand surges
during rush hours or rainy days, are captured with the vec-
tor representation as instantiated entities [38], thus yielding
better coordination performance than the learning mecha-
nism based on conventional CNNs [18].

Specifically, the vector-based capsule network character-
izes observations of the input environment (i.e., distributions
of demands, vehicle availability, and all vehicles) through
the instantiation of the zones. For the image processing, cap-
sules have been proposed to leverage the high-dimensional
coincidence filtering [38], where a target object can be identi-
fied via agreement between the votes for the relative spatial
relationship. In our formulation, we model the series of
measurements on demand (pick-ups D), supply (available
vehicles A) and the vehicle distributions V into time sequen-
ces of spatial heatmap images for Q-values. Therefore, like
image processing, zones with have concurrent surges in the
above distributions are structured together as instances and
captured by the vectors of neurons. Conventional scalar-
based networks cannot characterize these and hence degrade
performance in the spatio-temporal scenarios.

4.2 Structures of Spatio-Temporal

Coordination Learning
Fig. 10 illustrates the processing structures of the main and
external state features, as detailed below.

a) Main spatial features {D, A, V}: Given the input heat-
map frames, {D¥), A" V) the core deep neural network
in STRide captures the spatial relationship between states,
actions and rewards. Specifically, a fine-grained capsule
network takes in the vehicle’s 2-D state representation, and
returns the estimated O-values, denoted as Q"*", w.r.t. the
2-D action space U,,.

We further illustrate the basic structures and learning
process of capsule network in STRlde Specifically, given
the mput heatmap X" = {D{", A¥, V(¥'1 processed from

m ) 771 ’ m

state S, the capsule network consists of four sequential
major components, i.e.,
X; = Conv (X"”"“) X2 =PC(Xy), (14)
)(3 _ UC(XQ), Qm\m — V(Xg),

where the first and fourth two-dimensional convolutional
layers (Conv) are used for transformation between the physi-
cal heatmap frames (scalar-based) and hidden capsule layers
(vector-based), Primary Capsule (PC) and Output Capsule (OC).

In our implementation, each capsule contains a structured
group of neurons reshaped and regrouped from convolu-
tional layers [5]. Each cuboid in PC/OC of Fig. 10, as a capsule,
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Fig. 10. Core module of spatio-temporal capsule-based Q-network characterizing and predicting the distributions of rewards.

corresponds to a group of convolutional units or neurons
(each neuron as a dimension is witha 9 x 9 kernel and a stride
of 2 in our prototype). Specifically, PC is comprised of N*°
C*C-D capsules, while OC is made of N% C%-D capsules. The
input Conv layer has N** C** x C** convolutional kernel fil-
ters, while the output one has N°** C°** x C°"* filters.

Fig. 11 shows the training/learning process of the cap-
sule network in STRide. In a nutshell, the parameters of
STRide’s capsules, consisting of traditional neuron weights
and additional capsule probabilities, are propagated and
refined between the layers of PC and OC. Specifically, let 0;;
be the logarithm prior probability captured by a preceding
capsule i in PC and its succeeding peer j in OC. A softmax
function [28] is then applied upon the 6;;’s, returning the
coupling coefficient f;; (normalized) as

o= exp(0;;)
Y exp ()

(15)
0;;’s capture the strengths of vehicle distributions in the
map.

Similarly to the traditional neuron structure, the capsule
network also has the weight coefficient across capsules i and
J, denoted as W;;, learned through the conventional back-
propagation algorithm [28]. All coefficients thus form an
NP¢ x N weight matrix . For each succeeding capsule j,
let q, be the ride prediction vector returned from a preceding
peer i in PC. The propagated vector from capsules i to j,
denoted as q;, is given by the product of neural network
weights ¥;; and prediction vectors q;, i.e.,

(16)

9 = W¥iq;,

Capsule 1
(PO

q:

vyl |fFoame—==

Capsule2  f,.
(PO) ?

Fig. 11. lllustration of routing-by-agreement in STRide’s capsules.

is then fed to capsule j as a weighted average by fi;’s, i.e.,
€ = Z fijqj\i'

A routing-by-agreement between capsules [5] is used to
differentiate the vectors by their strengths of mutual agree-
ment. Capsule training can then be regarded as extracting
and refining the active routes from a preceding capsule layer
(PC) to a succeeding one (OC). An active route across layers
means a specific coordination strategy with certain zones,
as an entity, is “memorized”, while a deactivated one repre-
sents that the unimportant connections can be “forgotten”.

Specifically, a squash function o;(-) is applied first upon e;
to characterize its length [5], which is given by

17

2
leil” e

e . (18)
1+ Jlejl® el

0;(e;) £

In other words, an increase in the vector length of the spatial
ride distribution saturates the output towards one, which is
identified and captured by the capsule network.

The logarithm prior probabilities 6,; are updated with the
product of prediction q;, and adjustment o;(e;), i.e.,

0ij — 0ij + 4, - 0;(e;)- 19)
The resultant 6;; is returned to Eq. (15) for another routing
iteration. Via routing-by-agreement, STRide finds the vec-
tors with higher agreement, preserving the ride correlations
across zones.

b) External temporal features E: Inclusion of E further aug-
ments the capsule network in handling temporal ride dynam-
ics, leading to a spatio-temporal formulation. This way,
STRide can capture better the multi-level periodicity in the
market dynamics.

Due to E’s lower dimension than vehicle and passenger
distributions, we form it into a vector of the external fea-
tures, and design a fully-connected neural network (Dense)
to learn the coordination. Specifically, the sequential model
with two layers of dense/fully-connected networks (with
respective output dimensions CP** and C3°") and subse-
quent ReLU activation functions [28] is given by

E, = Dense(Ei“p“t)7 E> = ReLU(E,),

20
E; = Dense(E;), Q™ = Reshape(ReLU(Ej)). 20
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where the final output Q™ is reshaped from a vector back to
2-D matrix w.r.t. the vehicle’s action space U,,,.

E is processed as in Fig. 6. Note that considering the tem-
poral continuity of weather records in E (temperature,
wind-speed, efc.), STRide leverages data from the last
learning step (k) as the external inputs of the next (k + 1).
STRide is also generic enough to be integrated with other
more advanced weather forecast models [16].

Finally, the estimated Q-value function w.r.t. each state
and action is given by merging Q™" and Q™, i.e.,

Q=0+ Q™. (21)
Then, in coordinat;\on STRide finds the zone with the maxi-
mum Q-value in Q for dispatching (subject to e-greedy in
Section 2.2). The set of parameters to be trained, denoted as
Q, is hence made of parameters contributing to Q™" (includ-
ing W;;’s and 6;;’s) and those neuron weights for Q™.

Further learning approximates the inherent and sophisti-
cated mapping function as closely as possible without speci-
fying the representation. While in this prototype we adopt
the double deep Q-network (Double DQN) [6], which is
detailed in the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2020.2992565,
STRide can be easily extended to other reinforcement
learning methods or mechanisms (evaluated in Section 5).

In summary, STRide model enables: (1) joint prediction
and decision: the model simultaneously forecasts the zone
demand-supply gap, and determines those with higher val-
ues for enhanced coordination; (2) self-adaptation: the model
can be dynamically updated with new input data, adapting
to urbanization and road network changes; (3) computational
efficiency: once the model is learned, an action decision can be
made efficiently given the fast propagation of state inputs
through neural network layers.

5 [EXPERIMENTAL EVALUATION

Given the datasets in Section 3.1, we first describe the exper-
imental settings in Section 5.1, and then present the results
in Section 5.2.

5.1 Experimental Settings
Comparison Schemes. We compare STRide with the follow-
ing typical algorithms:

e CRL:an online learning framework [39] leveraging the
conventional convolutional neural network (CNN) for
reinforced coordination policy learning [18].

e NRL: an online learning leveraging the three-layer
dense neural network for reinforced coordination
policy learning [40].

e L&P, a sequential decision-making and optimization
algorithm, realizing learning and planning [30], [41]
for order dispatch.

e CONT: a conventional model-based approach, for-
mulating a traffic control problem [42] to find the
dispatching and matching strategy based on the
demand-supply balancing model. The complex city
network is simplified for ease of model specification.
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e MRL: a multi-agent reinforcement learning method [9]
for ride sharing dispatching and matching.

e GD: a heuristic vehicle dispatching without optimiz-
ing or learning the ride dynamics. MOD vehicles are
greedily dispatched towards zones with the highest
demand-supply imbalances [22], [42].

We also compare in the sensitivity studies the perfor-
mance variation by replacing the capsule module in STRide
with neural network (NN) and convolutional neural network
(settings of the NN/CNN layers follow [18], [40]), which are
denoted as w/ NN and w/ CNN, respectively. We have also
studied the performance with Asynchronous Advantage
Actor-Critic (A3C) [43], deep Q-network (DQN), dueling
double deep Q-network (Dueling DQN), which are denoted
as w/ A3C, w/ DQN, and w/ Duel DQN, respectively. For
A3C we adopt 10 actor-learners or workers. All evaluated
schemes (detailed parameter settings can be referred to their
work) use the same rides data, the module for estimated
time of arrival (travel time data of NYC Taxi, Didi and
Car2Go are shown in Fig. 12) and learning emulator settings.
We then comparatively evaluate the performance based on
the following metrics:

e  Profits (platform): characterizes the overall profitabil-
ity of the platform. In our experiment, we show the
mean platform profit (fulfilled ride revenues sub-
tracted by relocation subsidies on fuel costs [9]) w.r.t.
each step, and normalize the values by global maxi-
mum of each dataset.

e Idle driving time (driver): is the time when the vehicle
is not occupied but still incurs the driving costs. Note
that in practice, the resultant costs including gasoline
and wear of vehicles also incur higher subsidies paid
by the platform inside a step. We show its mean (in
minute) w.r.t. each driver before a pick-up.

e  Rejection rate (platform): the number of rejects due to
unavailability of vehicles nearby versus that of the
total requests. We present the mean rejection rate
w.r.t. the step.

o  Waiting time (passenger): time between the event that
a request is accepted and that the matched vehicle
picks up the passenger. We show the mean (in min-
ute) w.r.t. each matched request.

o  Coordination time (platform): the computation time of
each online decision for MOD request matching and
vehicle dispatching, characterizing computation over-
head and deployment efficiency. Specifically, we
show the mean coordination time (in second) w.r.t. the
step.

We have implemented the framework of STRide as

well as its learning environment in python/tensorflow, and
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the models of STRide and other state-of-the-arts are tra-
ined and evaluated upon a desktop server with Intel
i7-8700K 3.70 GHz, 16 GB RAM and Nvidia GTX 1080Ti with
11 GB DDR5.

Parameters: Unless otherwise stated, we use the following
parameters by default. In the learning emulator, we empiri-
cally set total number of vehicles M = 8,000, « = 1.0, 8 = 0.3
and e = 0.1. The total number of episodes is set to 12, while
each of them lasts for 30 hours. Each step lasts for 30 min. We
consider that a rejection happens if the distance between a
request and the nearest vacant vehicle is greater than 5.0 km.
For Uber/Taxis, a = 5 and b = 3; for Didi/Car2Go, a = 5 and
b = 1. The platform revenues are 20 percent of the ride fares,
and the subsidies are 20 percent of the relocation costs based
on the surveys in [2], [22], [33]. The city map is partitioned
into L, x L, =219 x 219 zones (rectangular shapes are
adjusted according to OSM map accessibility), while each
vehicle is considered to move in its neighborhood of 15 x 15
zones (U,,). Each vehicle’s scopeisset L] x L =23 x 23.

In the core Q-network, we set each layer of the spatio-tem-
poral capsule network as follows: (N*¢, C*®) = (8,8), (N,
C™) = (8,50), (N**,C*) =(64,9), (N°*t,C°*) = (64,6)
(each Conv has a stride of 1 and ReLU activation) for main fea-
ture components in Fig. 10; (CP*®,C5*") = (10, 15?) for the
rest components handling the 18 external features (L = 16
and 2-Dlocation in E as in Fig. 6).

5.2 Experimental Results
With the above settings, we present the experimental results.
Module & Sensitivity Analysis. Taking NYC Uber as an
example, we first show the performance variation of STRide
w.r.t. the settings of several important design parameters
(other datasets are left out here due to space limit). Note that
we take the first 48 hours out of all one-month rides for the
parameter and system validation, while the rest of them are
used for evaluation/testing.
Number of Iterative Routings. Fig. 13 shows the mean rejec-
tion rate and mean training time per step (in s) w.r.t. the num-
ber of iterative routings in STRide (Section 4.2). Involvement
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of more routings by agreement may lead to better extraction
of important ride features, at the cost of longer training time.
Meanwhile, the extractable features tend to decrease, leading
to the diminishing returns in the rejection rate improvement.
Therefore, to balance these, we choose 5 routings in our proto-
type study.

Ride Preference/External Factors. Fig. 14 shows STRide’s nor-
malized profits without one of ride preference (pre), external
factors (ext) and contextual scope (cont), and the complete
model with all components. Introducing ride preferences helps
STRide relocate vehicles across popular zones with strong
connectivities, thus enhancing the probability of picking up
more passengers and making resultant profits. Inclusion of
auxiliary factors like wind speed, temperature and weather
conditions related to MOD rides help STRide capture more
intrinsic routines in the spatio-temporal ride distribution,
hence achieving more profits than that without external
knowledge. The contextual scope helps STRide to better cap-
ture the observations around each vehicle’s neighborhood.

Training Loss. We also show in Fig. 15 the model learning
loss of STRide and CRL w.r.t. the number of steps based on
the validation data. Without a comprehensive learning
structure, CRL’s training curve easily diverges due to the
complexity in metropolitan MOD network dynamics.
Thanks to more comprehensive capsule network structures
that combine different influential factors, STRide outper-
forms CRL with better learning capability. We also show
the loss of STRide w/ NN and w/ CNN as comparison,
from which we can observe that our capsule designs help
STRide have a better convergence than NN and CNN. We
have conducted convergence experiments upon the datasets
of other MOD platforms (other similar results are omitted
due to space limit). Further theoretical studies will be con-
sidered is part of our future work.

Change of Q-Network Modules. We further compare in Fig. 16
the performance—in terms of profits and waiting time—of
STRide with the spatio-temporal capsule network (w/ Cap),
the one with deep neural network (w/ DNN), and the one
with convolutional neural network (w/ CNN). Using the pro-
posed capsule network, STRide better characterizes the rela-
tionship between the states, actions and the long-term values.
Without capsule’s vectorization, NN-based and CNN-based
Q-networks cannot capture the spatial dependencies of the
close and distant zones. Therefore, one can observe that
STRide w/ Cap outperforms other settings, yielding more
profits and shorter waiting time (by often more than 28
and 13 percent improvements, respectively, in our test).

Change of Reward Functions. Taking NYC Taxi as an exam-
ple, we compare the coordination performance of STRide
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with and without the reward function designs in Section 3.2.
In particular, we compare in Figs. 17 and 18, respectively,
the waiting time and idle driving time distributions of
STRide with and without the weighted design (denoted as
w/ Pre and w/o Pre) of Eq. (13). These two metrics specify the
quality of the MOD services. We can observe that inclusion
of ride preference better steers the MOD vehicles towards
the connected zones, thus benefiting both passengers and
drivers by reducing the waiting and idle driving time
(respectively by 17.21 and 45.52 percent in our test).

Change of Reinforcement Learning Methods. By changing the
reinforcement learning mechanisms within STRide, we
show in Fig. 19 the performance comparison of double
DQON with DON, dueling DON and A3C, in terms of mean
profits and waiting time. We can observe that double DQN
outperforms DQN in terms of the mean profits. The per-
formances of double DQN and dueling DQN are close to
each other since the learned MOD features suffice to main-
tain good coordination performance based on the dataset.
One can also see that the coordination performance of A3C
compared with double DQN may vary with data sets
mainly because A3C focuses on lightweight learning, but
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TABLE 2
Mean Profits (Normalized) for the Five Datasets

Schemes NYC Uber NYC Taxi Chengdu Didi Turin Car2Go Chicago Taxi

CRL 0.4235 0.5847 0.4199 0.4871 0.4926
NRL 0.4060 0.3415 0.3909 0.4519 0.4301
L&P 0.3780 0.3554 0.3055 0.4116 0.4071
CONT 0.1461 0.2917 0.2718 0.3520 0.3567
MRL 0.5420 0.6462 0.4993 0.5087 0.5318
GD 0.1354 0.2267 0.2547 0.3119 0.2466
STRide 0.7413 0.7665 0.6799 0.5925 0.7333

does not necessarily improve the learning performance.
Also, note that our focus is on the spatial and temporal
learning framework for coordination.

Platform Profitability, Efficiency & Service Quality. Given
aforementioned sensitivity studies, we further present the
performance of our trained model with evaluation data.

Profits & Efficiency. Table 2 shows the mean profit (normal-
ized w.r.t. each dataset) of STRide in comparison with other
state-of-the-arts. The schemes like L&P and CONT may not
fully capture the spatial-temporal complexity in MOD ride
flows. STRide is shown to achieve much higher rewards
(often by more than 30 percent) than other schemes. The
advanced spatio-temporal capsule network helps STRide
accurately capture the dynamic imbalance between demands
and supplies. With step-by-step loss minimization, the RL
framework in STRide proactively finds a coordination pol-
icy with more pick-ups and less relocation effort, yielding
more profits for the MOD platforms.

Taking the large-scale NYC taxi as an example, we show
the CDFs of computation time in Fig. 20. Due to the fast
weight propagation across the layers, STRide achieves much
better computational efficiency than other more sophisticated
control and heuristic mechanisms, which is essential for real-
time coordination.

Taking Chengdu Didi as an example, we further show
in Fig. 21 the temporal profits of STRide during a day (of
24 hours) compared to CRL. The dynamics of temporal
rewards also reflect the relation between supplies and
demands during the rush hours.

We also show in Fig. 22 the MOD demand-supply dynam-
ics over the time in a business zone of Chengdu. We plot the
relative gap when demand surpasses supply there, and
show that the state values (Q) grow with the gap, meaning
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the locations are more valuable for relocation. We can also see
that the adapted state values of STRide w/ Cap captures the
dynamic gaps more accurately and proactively than that w/
CNN. The result validates effectiveness and proactiveness of
STRide in learning and coordinating the MOD networks.

Idle Driving Time. Table 3 shows that a shorter average
idle driving time (min) w.r.t. the five datasets. It is due
mainly to the highly accurate Q-value approximation
within STRide, capturing the spatio-temporal relations
among states, actions and consequent rewards. Less idle
driving may also lead to less subsidies and costs from the
MOD platform owner, enhancing its overall profitability.
For NYC, taxis may show shorter idle travels due to more
demands recorded than the Uber cars (Section 3.1). On
the other hand, due to smaller city size and population,
the MOD services in Turin may not be as active as New
York City and Chicago, leading to a slightly higher idle
driving time.

Rejection Rate. Table 4 shows the lower mean rejection
rates of the schemes w.r.t. the five different data sets. Thanks
to STRide’s proactive relocation of MOD vehicles, fewer
ride requests are rejected. On the other hand, we can infer
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TABLE 3
Mean Idle Driving Time (Min) for the Five Datasets

Schemes NYC Uber NYC Taxi Chengdu Didi Turin Car2Go Chicago Taxi

CRL 4.45 3.65 4.22 3.83 4.35
NRL 7.09 4.85 6.74 3.93 5.43
L&P 9.44 6.74 9.36 429 6.48
CONT 11.46 9.2 9.61 5.10 9.93
MRL 4.41 3.63 3.85 3.63 4.35
GD 12.09 11.07 11.72 9.88 11.49
STRide 2.87 2.38 2.69 2.94 3.34
TABLE 4

Mean Rejection Rates for the Five Datasets

Schemes NYC Uber NYC Taxi Chengdu Didi Turin Car2Go Chicago Taxi

CRL 0.2172 0.1941 0.1617 0.2036 0.2389
NRL 0.2201 0.2019 0.2172 0.2081 0.2510
L&P 0.2900 0.2201 0.2262 0.2157 0.2798
CONT 0.2863 0.2413 0.2616 0.2655 0.3078
MRL 0.2063 0.2022 0.1880 0.1912 0.2030
GD 0.2925 0.2705 0.2689 0.3036 0.3802
STRide 0.1376 0.1162 0.0863 0.1637 0.2020
TABLE 5

Mean Waiting Time (Min) fo the Five Datasets

Schemes NYC Uber NYCTaxi Chengdu Didi Turin Car2Go Chicago Taxi

CRL 2.80 3.36 3.01 2.12 4.52
NRL 4.12 4.06 4.55 237 4.85
L&P 3.83 4.60 4.66 3.54 6.55
CONT 5.23 5.68 6.37 3.96 6.65
MRL 3.84 3.68 3.42 3.42 4.40
GD 5.98 6.68 7.45 431 8.44
STRide 1.70 2.23 2.13 1.97 3.27

that STRide accurately learns the locations of potentially
high demands, and determines proactive dispatch regions
within the rejection distance threshold. Due to a larger ser-
vice coverage, we observe higher rejection rates from the tri-
als in NYC than in Chengdu.

Waiting Time. Table 5 shows the shorter passenger aver-
age waiting time (min) of STRide than other related algo-
rithms. Via more proactive dispatching, the supplies match
demands in time, hence resulting in shorter waits. This
way, the MOD platforms can improve their service quality,
and hence will likely achieve higher passenger satisfaction.
Due to the greater freedom of pick-ups/drop-offs in prac-
tice, Uber cars experience a shorter waiting time (15.11 per-
cent shorter, on average, in our test) than taxis in NYC.

Coordination Visualization. To better illustrate the perfor-
mance, we also qualitatively visualize the state values
(normalized Q) and coordination results by STRide in
Figs. 23 and 24, respectively. Taking NYC Yellow Taxi as
an example, we plot the estimated Q distribution of Man-
hattan island in Fig. 23, characterizing the expected
demand-supply imbalances. The warmer colors indicate
higher state values for relocation. We also show the resul-
tant out-flows of vacant vehicles dispatched by STRide in
several selected zones there in Fig. 24. The radius of a sec-
tor represents the size of the out-flow. We can see that
more MOD vehicles are relocated from the Manhattan
peripherals to midtown due to the significant supply-and-
demand imbalance there.
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Fig. 23. Heatmap of visualized state values, NYC Taxi (09:00).

6 DISCUSSION

We briefly discuss the deployment of STRide from the fol-
lowing two perspectives:

o  Single/Multi-Agent Reinforcement Learning: We focus
on the spatial and temporal learning of the MOD
systems like Uber and Didi, and hence leverage the
single-agent settings for ease of implementation and
prototyping, especially when we deal with large-
scale MOD ride flows. We take into account the
neighborhood observations of each vehicle as the con-
textual scope, thus realizing more fine-grained deci-
sion learning. While our work leveraged single-agent
reinforcement learning in the prototype, our core
designs, including the spatio-temporal capsule net-
work, can be easily extended to a multi-agent frame-
work. Specifically, we can consider and model each
individual driver as an agent for the observation and
decision. Possible approaches include probabilistic
modeling of the interactions among the driver
agents [44], as well as hierarchical regional coordina-
tion [8], to address scalability problem, which is part
of our future work.

In our experimental studies, we have also investi-
gated STRide upon different reinforced learning
frameworks, showing its adaptability. Despite the
dynamic environments and vehicle-wise rewards,
STRide has been shown to achieve better coordina-
tion performance than other schemes, demonstrating
its adaptability and learning capability.

e  Demands, Requests & Pick-ups: While self-movements
of drivers have been considered in our framework,
there is still room to reflect the practical MOD set-
tings. A passenger’s ride demand may not always
lead to an actual request and subsequent pick-up.
When a potential rider launches the MOD app, her/
his request of a ride may be discouraged by the
surged price [19] or longer waiting time, leading to a
difference of “demand” and pick-up. Due to the
unavailability of the aforementioned data, we did not
formulate the above into the current framework, but
will consider the above scenarios in our future work.

7 RELATED WORK

Mobility-on-Demand. Driven by increasing vehicular connec-
tivity [45], [46], cloud computing and big data analytics [47],
[48], the emerging online platforms for MOD services, typi-
fied by ride-sharing and ride-hailing [49], have recently
attracted significant attention. Various problems, including
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privacy-preserving [50], traffic flow [51], and responses to
dynamic pricing [17], [52], [53], [54] have been investigated
for better MOD services. In contrast, we focused on the
MOD coordination problem which is essential for an MOD
platform, and presented our novel and comprehensive
learning framework.

Transportation Management. Numerous optimization-based
schemes have been proposed [42], [55], [56], including control-
based methodology [51], combinatorial optimization [30], and
queueing theory [57]. Despite the reported promising results,
the optimization-based models are usually difficult to solve
efficiently, particularly for large-scale MOD networks. Fur-
thermore, it is still very challenging to specify beforehand a
generic optimization formulation to accommodate highly
dynamic and uncertain traffic environments.

Powered by exploding big data [58] and facilitating paral-
lelism [7], [59], we have witnessed unprecedented advances
in learning-based transportation management [4], [8], [60],
[61]. Wen et al. [40] conducted preliminary studies upon the
learning-based MOD rebalancing. Lin et al. [9] studied an
RL-based mechanism managing the fleet with scalar-based
neural network. Similarly, Xu et al. [30] explored the order
dispatching, focusing on the sequential dispatch optimiza-
tion problem. Oda et al. [18] proposed a fleet management
system based on convolutional neural networks, finding the
policy for relocating the connected taxicabs.

Multi-agent reinforcement learning has also been studied
for ride sharing recently. Li et al. [44] studied mean field
multi-agent reinforcement learning for efficient order dis-
patching. Lin et al. [9] investigated the contextual multi-
agent reinforcement learning for large-scale management.

Unlike the above-mentioned studies, STRide incorpo-
rates several practical aspects, such as the distributed and
contextual vehicle scopes, heatmap frames representing ride
distributions, and external weather/event factors. We have
also designed in STRide a novel capsule-based Q-network
for comprehensive learning. Furthermore, in contrast with
the usual focus on the snapshot of ride distribution [39], [40],
STRide accounts for multi-level complexity, periodicity and
preference in spatio-temporal ride patterns, thus achieving
better performance with the real-world data sets. Albeit
orthogonal to the multi-agent settings, our work can be
adapted further to muli-agent designs to enhance the system
performance and deployability.

Coordination Factors. There are many other internal and
external factors affecting the success of transportation coordi-
nation, including social [62], demographic [12], [63], personal-
ization [41], [64], governmental and psychological [53]
perspectives. Despite the challenges to design a complete
coordination model, our spatio-temporal RL mechanism is a
good and comprehensive direction to accommodate the
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above factors. Further mechanism design for incentive-com-
patible monetary rewards in driver redistribution can also be
referred to other orthogonal works [57], [65], [66].

8 CONCLUSION

We have proposed STRide, a spatio-temporal reinforcement
learning framework for MOD coordination. Given the MOD
ride data, STRide forms a learning emulator for enhanced
coordination policy training, which takes into account the
ride preference, contextual scopes of vehicles, and travel
time. We have designed a spatio-temporal capsule network
in STRide to map the states and dispatch actions towards the
expected future rewards. Spatial distributions of demands
and supplies, and the temporal external factors like events
and weather conditions, are jointly considered. With a struc-
tured group of neurons capturing the complex ride correla-
tions, STRide comprehensively learns the improved policies
for the vehicle coordination. We have conducted extensive
data analytics and experimental evaluation on five large-scale
datasets (Uber, Taxis, Car2Go and Didi). STRide is shown to
outperform many other state-of-the-arts, with lower request
rejection rates, shorter waiting time, and higher platform
profitability compared to state-of-the-arts.

ACKNOWLEDGMENTS

We would like to thank DiDi Chuxing GAIA Open Dataset
Initiative for the shared ride data.

REFERENCES

[1] Ride hailing market by service type (e-hailing, car sharing, station-
based, car rental), data service (navigation, information, payment,
others), connectivity (3G, 4G, 5G, Wi-Fi and V2V, V2I, V2P, V2N),
vehicle type & region - global forecast to 2025, 2017. [Online].
Available: https:/ /www.marketsandmarkets.com/Market-Reports /
mobility-on-demand-market-1 98699113.html

[2] ]. Horwitz, “One year after the Uber-Didi merger, it's only getting
harder to hail a ride in China,” 2017. [Online]. Available: https://
qz.com/1045268/ and http://news.sina.com.cn/c/2017-07-26/
doc-ifyinryq6222913.shtml

[3] Uber drivers report 80-plus hour workweeks and a lot of waiting,
2019. [Online]. Available: http://theconversation.com/uber-drivers-
report-80-plus-hour-workweeks-a nd-a-lot-of-waiting-115782

[4] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from
mobility data using deep learning,” IEEE Netw., vol. 32, no. 4,
pp- 4046, Jul. 2018.

[5] S.Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp- 3856-3866.

[6] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. 30th AAAI Conf. Artif.
Intell., 2016, vol. 2, pp. 2094-2100.

[71 Q. Cai, A. Filos-Ratsikas, P. Tang, and Y. Zhang, “Reinforcement
mechanism design for e-commerce,” in Proc. World Wide Web
Conf., 2018, pp. 1339-1348.

[8] L.Pan, Q.Cai, Z. Fang, P. Tang, and L. Huang, “A deep reinforce-
ment learning framework for rebalancing dockless bike sharing sys-
tems,” in Proc. 33rd AAAI Conf. Artif. Intell., 2018, pp. 1393-1400.

[91 K. Lin, R. Zhao, Z. Xu, and ]. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in
Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 1774-1783.

[10] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing;:
Concepts, methodologies, and applications,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 3, pp. 38:1-38:55, Sep. 2014.

[11] S. Aoki and R. R. Rajkumar, “Dynamic intersections and self-
driving vehicles,” in Proc. ACM/IEEE 9th Int. Conf. Cyber-Physical
Syst., 2018, pp. 320-330.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

[12] S. He and K. G. Shin, “(Re)Configuring bike station network via
crowdsourced information fusion and joint optimization,” in Proc.
18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2018, pp. 1-10.

[13] B. Du, Y. Tong, Z. Zhou, Q. Tao, and W. Zhou, “Demand-aware
charger planning for electric vehicle sharing,” in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1330-1338.

[14] S. He and K. G. Shin, “Spatio-temporal capsule-based reinforce-
ment learning for mobility-on-demand network coordination,” in
Proc. World Wide Web Conf., 2019, pp. 2806-2813.

[15] R.S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[16] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual
networks for citywide crowd flows prediction,” in Proc. 31st AAAI
Conf. Artif. Intell., 2017, pp. 1655-1661.

[17] Z.Fang, L. Huang, and A. Wierman, “Prices and subsidies in the
sharing economy,” in Proc. 26th Int. Conf. World Wide Web, 2017,
pp- 53-62.

[18] T. Oda and C. Joe-Wong, “MOVI: A model-free approach to
dynamic fleet management,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 2708-2716.

[19] K. Bimpikis, O. Candogan, and D. Saban, “Spatial pricing in ride-
sharing networks,” Operations Res., vol. 67, no. 3, pp. 744-769, 2019.

[20] Uber pickups in New York City, 2018. [Online]. Available:
https://www kaggle.com/fivethirtyeight/uber-pickups-in-new-
york-city/da ta

[21] TLC Trip Record Data, 2018. [Online]. Available: http://www.
nyc.gov/html/tlc/html/about/trip_record  data.shtml

[22] L. Rayle, D. Dai, N. Chan, R. Cervero, and S. Shaheen, “Just a bet-
ter Taxi? A survey-based comparison of taxis, transit, and ride-
sourcing services in San Francisco,” Transport Policy, vol. 45,
pp. 168-178, 2016.

[23] Didi Chuxing Technology Co, 2019. [Online]. Available: www.
didiglobal.com

[24] M. Cocca, D. Giordano, M. Mellia, and L. Vassio, “Free floating
electric car sharing design: Data driven optimisation,” Pervasive
Mobile Comput., vol. 55, pp. 59-75, 2019.

[25] Chicago taxi rides 2016: Details of taxi rides in chicago, 2017.
[Online]. Available: https://www.kaggle.com/chicago/chicago-
taxi-rides-2016

[26] National Centers for Environmental Information, National Oce-
anic and Atmospheric Association (NOAA) — Data Tools: Local
Climatological Data (LCD), 2018. [Online]. Available: https://
www.ncdc.noaa.gov/cdo-web/datatools/lcd

[27] Open Street Map, 2018. [Online]. Available: https://www.
openstreetmap.org/

[28] I Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learn-
ing, vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[29] H. Campbell, “RSG 2017 survey results: Driver earnings, satisfac-
tion & demographics,” 2017. [Online]. Available: https://the
rideshareguy.com/rsg-2017-survey-results-driver-earnings-sat
isfaction-and-demographics/

[30] Z.Xu et al., “Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach,” in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 905-913.

[31] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. 24th Int.
Conf. World Wide Web, 2015, pp. 1067-1077.

[32] Global petrol prices, 2018. [Online]. Available: https://www.
globalpetrolprices.com/gasoline_prices/

[33] R.Dovey, “5 Florida cities team up to subsidize Uber rides,” 2017.
[Online]. Available: https://nextcity.org/daily/entry/five-florida-
cities-subsidize-uber-rides

[34] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techni-
ques. Amsterdam, Netherlands: Elsevier, 2011.

[35] Y.Li, K.Fu, Z. Wang, C. Shahabi, ]. Ye, and Y. Liu, “Multi-task repre-
sentation learning for travel time estimation,” in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1695-1704.

[36] D.Wang, W.Cao, J. Li, and J. Ye, “DeepSD: Supply-demand predic-
tion for online car-hailing services using deep neural networks,” in
Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 243-254.

[37]1 Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 858-866.

[38] G.E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM
routing,” in Proc. Int. Conf. Learn. Representations, 2018.

[39] Y. Gao, D. Jiang, and Y. Xu, “Optimize taxi driving strategies based
on reinforcement learning,” Int. J. Geographical Inf. Sci., vol. 32, no. 8,
pp- 1677-1696, 2018.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 07,2022 at 02:22:07 UTC from IEEE Xplore. Restrictions apply.


https://www.marketsandmarkets.com/Market-Reports/mobility-on-demand-market-1 98699113.html
https://www.marketsandmarkets.com/Market-Reports/mobility-on-demand-market-1 98699113.html
https://qz.com/1045268/ and http://news.sina.com.cn/c/2017--07-26/doc-ifyinryq6222913.shtml
https://qz.com/1045268/ and http://news.sina.com.cn/c/2017--07-26/doc-ifyinryq6222913.shtml
https://qz.com/1045268/ and http://news.sina.com.cn/c/2017--07-26/doc-ifyinryq6222913.shtml
http://theconversation.com/uber-drivers-report-80-plus-hour-workweeks-a nd-a-lot-of-waiting-115782
http://theconversation.com/uber-drivers-report-80-plus-hour-workweeks-a nd-a-lot-of-waiting-115782
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city/da ta
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city/da ta
http://www.nyc.gov/html/tlc/html/about/trip_record_ data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_ data.shtml
www.didiglobal.com
www.didiglobal.com
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.ncdc.noaa.gov/cdo-web/datatools/lcd
https://www.ncdc.noaa.gov/cdo-web/datatools/lcd
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://therideshareguy.com/rsg-2017-survey-results-driver-earnings-sat isfaction-and-demographics/
https://therideshareguy.com/rsg-2017-survey-results-driver-earnings-sat isfaction-and-demographics/
https://therideshareguy.com/rsg-2017-survey-results-driver-earnings-sat isfaction-and-demographics/
https://www.globalpetrolprices.com/gasoline_prices/
https://www.globalpetrolprices.com/gasoline_prices/
https://nextcity.org/daily/entry/five-florida-cities-subsidize-uber-rides
https://nextcity.org/daily/entry/five-florida-cities-subsidize-uber-rides

HE AND SHIN: SPATIO-TEMPORAL CAPSULE-BASED REINFORCEMENT LEARNING FOR MOBILITY-ON-DEMAND COORDINATION

[40] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-
demand systems: A reinforcement learning approach,” in Proc.
IEEE 20th Int. Conf. Intell. Transp. Syst., 2017, pp. 220-225.

[41] L. Zhang et al., “A taxi order dispatch model based on combinato-
rial optimization,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2017, pp. 2151-2159.

[42] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization
for dynamic ride-sharing: A review,” Eur. |. Oper. Res., vol. 223,
no. 2, pp. 295-303, 2012.

[43] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

[44] M. Li et al., “Efficient ridesharing order dispatching with mean
field multi-agent reinforcement learning,” in Proc. World Wide Web
Conf., 2019, pp. 983-994.

[45] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative loca-
tion and activity recommendations with GPS history data,” in
Proc. 19th Int. Conf. World Wide Web, 2010, pp. 1029-1038.

[46] K. D'Silva, K. Jayarajah, A. Noulas, C. Mascolo, and A. Misra,
“The role of urban mobility in retail business survival,” Proc.
ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 2, no. 3,
2018, Art. no. 100.

[47] C. Zhang et al., “Regions, periods, activities: Uncovering urban
dynamics via cross-modal representation learning,” in Proc. 26th
Int. Conf. World Wide Web, 2017, pp. 361-370.

[48] S.Yao,S.Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “DeepSense:
A unified deep learning framework for time-series mobile sensing
data processing,” in Proc. 26th Int. Conf. World Wide Web, 2017,
pp- 351-360.

[49] S. Jiang, L. Chen, A. Mislove, and C. Wilson, “On ridesharing
competition and accessibility: Evidence from Uber, Lyft, and
Taxi,” in Proc. World Wide Web Conf., 2018, pp. 863-872.

[50] X. Xie, F. Zhang, and D. Zhang, “PrivateHunt: Multi-source data-
driven dispatching in for-hire vehicle systems,” Proc. ACM Interac-
tive Mobile Wearable Ubiquitous Technol., vol. 2, no. 1, pp. 45:1-45:26,
Mar. 2018.

[51] F. Miao et al.,“Taxi dispatch with real-time sensing data in metro-
politan areas: A receding horizon control approach,” IEEE Trans.
Autom. Sci. Eng., vol. 13, no. 2, pp. 463-478, Apr. 2016.

[52] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware
ridesharing,” Proc. VLDB Endowment, vol. 11, no. 8, pp. 853-865,
Apr. 2018.

[53] S. Guo, C. Chen, Y. Liu, K. Xu, and D. M. Chiu, “Modelling
passengers’ reaction to dynamic prices in ride-on-demand serv-
ices: A search for the best fare,” Proc. ACM Interactive Mobile Wear-
able Ubiquitous Technol., vol. 1, no. 4, pp. 136:1-136:23, Jan. 2018.

[54] S. Guo et al., “A simple but quantifiable approach to dynamic
price prediction in ride-on-demand services leveraging multi-
source urban data,” Proc. ACM Interactive Mobile Wearable Ubiqui-
tous Technol., vol. 2, no. 3, pp. 112:1-112:24, Sep. 2018.

[55] E.Walraven, M. T. Spaan, and B. Bakker, “Traffic flow optimization:
A reinforcement learning approach,” Eng. Appl. Artif. Intell., vol. 52,
pp- 203-212,2016.

[56] H. Zheng and ]. Wu, “Online to offline business: Urban taxi dis-
patching with passenger-driver matching stability,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 816-825.

[57] S. Banerjee, R. Johari, and C. Riquelme, “Pricing in ride-sharing
platforms: A queueing-theoretic approach,” in Proc. 16th ACM
Conf. Econ. Comput., 2015, pp. 639-639.

[58] C.Miao, Q. Li, L. Su, M. Huai, W. Jiang, and J. Gao, “Attack under
disguise: An intelligent data poisoning attack mechanism in
crowdsourcing,” in Proc. World Wide Web Conf., 2018, pp. 13-22.

[59] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting city-
wide crowd flows using deep spatio-temporal residual networks,”
Artif. Intell., vol. 259, pp. 147-166, 2018.

[60] Y.Li, Y. Zheng, and Q. Yang, “Dynamic bike reposition: A spatio-
temporal reinforcement learning approach,” in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1724-1733.

[61] H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A reinforce-
ment learning approach for intelligent traffic light control,” in
Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 2496-2505.

[62] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting
locations and travel sequences from GPS trajectories,” in Proc.
18th Int. Conf. World Wide Web, 2009, pp. 791-800.

[63] F. Kooti, M. Grbovic, L. M. Aiello, N. Djuric, V. Radosavljevic, and
K. Lerman, “Analyzing Uber’s ride-sharing economy,” in Proc.
26th Int. Conf. World Wide Web Companion, 2017, pp. 574-582.

1461

[64] Y. Li, H. Su, U. Demiryurek, B. Zheng, T. He, and C. Shahabi,
“PaRE: A system for personalized route guidance,” in Proc. 26th
Int. Conf. World Wide Web, 2017, pp. 637-646.

[65] M. K. Lee, D. Kusbit, E. Metsky, and L. Dabbish, “Working with
machines: The impact of algorithmic and data-driven manage-
ment on human workers,” in Proc. 33rd Annu. ACM Conf. Hum.
Factors Comput. Syst., 2015, pp. 1603-1612.

[66] D.Tomaras, I. Boutsis, and V. Kalogeraki, “Modeling and predict-
ing bike demand in large city situations,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun., 2018, pp. 1-10.

Suining He (Member, |IEEE) received the PhD
degree from the Department of Computer Science
and Engineering, The Hong Kong University of
Science and Technology (HKUST), Hong Kong. He
is currently working as an assistant professor with
the Department of Computer Science and Engi-
neering, The University of Connecticut (UConn),
Storrs, Connecticut. Before joining UConn, he
worked as a postdoctoral research fellow at the
Real-Time Computing Lab (RTCL), Department of
Electrical Engineering and Computer Science, the
University of Michigan, Ann Arbor, Michigan from 2016 to 2019. He is a
Google PhD fellow, 2015. His research interest includes smart transporta-
tion, urban data science, and mobile computing. He is an ACM member.

Kang G. Shin (Life Fellow, |IEEE) is the Kevin &
Nancy O’Connor professor of computer science
in the Department of Electrical Engineering and
Computer Science, The University of Michigan,
Ann Arbor. His current research focuses on QoS-
sensitive computing and networking as well as on
embedded real-time and cyber-physical systems,
such as autonomous vehicles. He has supervised
the completion of 85 PhDs, and authored/coau-
thored close to 1,000 technical articles, a textbook
and about 60 patents or invention disclosures, and
received numerous awards, including 2019 Caspar Bowden Award for Out-
standing Research in Privacy Enhancing Technologies, and the best paper
awards from the 2011 ACM International Conference on Mobile Computing
and Networking (MobiCom 2011), the 2011 IEEE International Conference
on Autonomic Computing, the 2010 and 2000 USENIX Annual Technical
Conferences, as well as the 2003 IEEE Communications Society William
R. Bennett Prize Paper Award, and the 1987 Outstanding IEEE Transac-
tions of Automatic Control Paper Award. He has also received several insti-
tutional awards, including the Research Excellence Award, in 1989,
Outstanding Achievement Award, in 1999, Distinguished faculty Achieve-
ment Award, in 2001, and Stephen Attwood Award, in 2004 from The Uni-
versity of Michigan (the highest honor bestowed to Michigan Engineering
faculty); a Distinguished Alumni Award of the College of Engineering, Seoul
National University in 2002; 2003 IEEE RTC Technical Achievement
Award; and 2006 Ho-Am Prize in Engineering (the highest honor bestowed
to Korean-origin engineers). He has chaired Michigan Computer Science
and Engineering Division for three years starting 1991, and also several
major conferences, including 2009 ACM MobiCom, 2008 IEEE SECON,
2005 ACM/USENIX MobiSys, 2000 IEEE RTAS, and 1987 IEEE RTSS.
He is the fellow of the ACM. He has also served or is serving on numerous
government committees, such as the US NSF Cyber-Physical Systems
Executive Committee and the Korean Government R&D Strategy Advisory
Committee. He has also helped founding a couple of startups and is
currently serving as an executive advisor for Samsung Research.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 07,2022 at 02:22:07 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


