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Abstract
We present Paralfetch, a novel prefetcher to speed up app
launches on personal computing/communication devices by:
1) accurate collection of launch-related disk read requests, 2)
pre-scheduling of these requests to improve I/O throughput
during prefetching, and 3) overlapping app execution with
disk prefetching for hiding disk access time from the app
execution. We have implemented Paralfetch under Linux
kernels on a desktop/laptop PC, a Raspberry Pi 3 board,
and an Android smartphone. Tests with popular apps show
that Paralfetch significantly reduces app launch times on
flash-based drives, and outperforms GSoC Prefetch and FAST,
which are representative app prefetchers available for Linux-
based systems.

1 Introduction
Quick app launches are of great importance to user experi-
ence on personal computing/communication devices such
as laptop/tablet PCs, single-board computers, and smart-
phones [17,18,22,24,26,34]. The latency of launching an app
mainly depends on the performance of the underlying CPU
and flash-based disks. Despite continuing improvements in
the performance of these components, the launch latencies,
especially of large apps and games, still remain an important
problem for three reasons.

First, the performance of flash storage does not always
meet users’ expectations/desire. For example, it has been pre-
dicted [53] that in 2025 around 50% of the data on flash will be
stored in QLC (quad-level cell) flash, which has 2.1× slower
read and 5.7× slower write times than TLC (triple-level cell)
flash [4]. The use of affordable QLC SSDs was found to ex-
tend the launch latency of the popular Blade and Soul game
from 91s to 114s [46], and that of Horizon Zero Dawn from
15.7s to 21.4s [47], compared to high-end SSDs. Many Win-
dows apps take a similar amount of time [48] to launch from
the Samsung QLC SSD as they do from the Intel X25-M G2
SSD, which was released in 2009. Furthermore, recent entry-
class SSDs widely adopt DRAM-less architecture [35], which
leads to additional flash accesses for translating logical-to-
physical addresses. A Raspberry Pi is also widely used to run
desktop applications [57], but it only supports the sluggish
MicroSD.

Second, the complexity of apps is continuously growing

due to the addition of new features and functionality to soft-
ware [50]. Unfortunately, complex software also requires
higher-level programming languages and libraries, generating
slower code, thus extending their launch latencies [54].

Third, although parallelism is effectively utilized in mod-
ern multicore CPUs and solid-state disks [8], app launches
can seldom exploit existing sources of parallelism. It has also
been shown [25] that CPUs and disks are seldom utilized si-
multaneously during a launch because synchronous disk reads
are dominant. Making better use of parallelism is, therefore,
a major consideration in the design of app prefetchers [24].

Launch latencies depend on the previous state of the sys-
tem, especially the disk cache. A cold start occurs when the
disk cache does not hold any data required by the app, ei-
ther because it is the first time the app has been launched,
or because all of the app’s data has been evicted since its
last run. A system cold start is a special case of cold start,
which occurs when no user-launched app is already running.
A warm start occurs when the app being launched has been
running recently, so the disk cache still holds all, or most, of
the data that it needs. A warm start is much faster than a cold
start, because no, or very little, data has to be fetched from
the disk. This avoids the concomitant file system operations,
thus saving CPU time as well as disk time.

An app prefetcher [6, 7, 9, 11, 28, 36, 40] can reduce the
time needed for a cold start: during learning phase, which
corresponds to the first launch of an app, the prefetcher col-
lects launch-related blocks and/or their access sequences (the
term launch sequence is used interchangeably). This is usu-
ally achieved by monitoring disk reads and/or page faults.
A prefetching phase occurs during subsequent launches of
the app, in which case this launch sequence is used for disk
prefetching to accelerate loading.

Different prefetching strategies are required for the differ-
ent seek characteristics of mechanical and flash disks. These
storage devices have different performance bottlenecks which
have been addressed in well-known ways. Threaded prefetch-
ing is designed for SSDs. A dedicated thread is used to
prefetch blocks in the order of their collection during moni-
toring. The prefetching thread runs concurrently with the app,
reducing the launch time. On the other hand, Sorted prefetch-
ing is designed for HDDs. Data is read from the disk in logical
block address (LBA) order to reduce seek times [5, 19, 20],



which account for most of the launch time. Sorted prefetching
is not done concurrently with the app because the app’s disk
I/O would disrupt prefetching in the LBA sequence.

In this paper, we define three fundamental challenges in
reaping the potential speed-up with an app prefetcher, and
then explain how Paralfetch addresses these issues that
previous approaches fail to achieve. Overall, this paper makes
the following main contributions:
• Accurate tracking of launch-related blocks (§3.1): Most
monitoring methods fail to locate a significant number of
blocks during the learning phase [23]. In threaded prefetching
on SSDs, an access tracer should collect not only accessed
blocks but their access order. To do this, a viable solution is to
monitor at the disk I/O level after performing the invalidation
of unused entries in the disk cache. Unfortunately, metadata
and data blocks would not be detected by imperfect OS-level
disk cache invalidation. To address this problem, Paralfetch
introduces a file-system-level block dependency check and
low-overhead page-fault monitoring.
• Pre-scheduling of these blocks to increase prefetch
throughput (§3.2): Although the I/O involved in prefetch-
ing frequently becomes a bottleneck in threaded prefetching
on commodity SSDs, prior work does not address this issue.
We observe I/O dependencies between prefetch blocks to sig-
nificantly hinder the asynchrony of I/O requests, reducing
prefetch throughput. We address this problem with a new
I/O reordering method called metadata shift that places more
I/O requests between dependent I/O requests, issuing more
I/O requests asynchronously. A range merge is also intro-
duced to combine nearby I/O requests into one large request,
improving I/O throughput.
• Tailored overlapping of application execution with
prefetching (§3.3) We find that aggressive prefetching with
excessive pre-scheduling can actually increase launch laten-
cies because of I/O contention between the app and prefetch-
ing threads. Modern SSDs’ reordering of outstanding I/O
operations can aggravate this contention [41]. We vary the
amount of I/O optimization in response to a prefetching bottle-
neck. This avoids the I/O contention caused by an excessive
optimization, and thus helps Paralfetch find a better opti-
mization level.
• Implementation (§4) and evaluation (§5) of Paralfetch
in the launch of common apps on a laptop PC, a Raspberry
Pi 3, and an Android smartphone. With the aforementioned
features, Paralfetch achieves launch performance close to
the warm start: On a PC, Paralfetch reduced the average
system cold start time (favoring competitors) of 16 benchmark
apps by 48.0%, this number corresponds to 11% and 22%
further reductions from FAST and GSoC Prefetch, respectively.
Paralfetch also reduced the average app launch time on a
Raspberry Pi 3 by 31%, and on an Android phone by 11%.
Paralfetch is publicly available1

1https://github.com/optios/paralfetch
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Figure 1: I/O Stack in Linux. Linux includes three disk caches:
page cache for regular files, slab (or slub) cache for metadata
objects, and buffer cache for metadata blocks. The slab is used
as an object-granular metadata cache for buffer cache. read
system call explicitly fills page cache based on its arguments,
while page cache for mmaped files is populated through page
fault mechanism. Readahead framework is responsible for
filling the contents of page cache, and it determines how many
blocks to be prefetched based on the access sequentiality. Note
that metadata blocks can be prefetched by EXT4 file system.

2 Background and Motivation

2.1 Targets of Paralfetch

Linux-based systems using EXT4 file system. We imple-
mented and tested a Paralfetch prototype on EXT4 file
system on a laptop with SSD, a Raspberry Pi 3 with microSD
card, and a Pixel smartphone with universal flash storage
(UFS).
Large apps with highly deterministic I/O. Other applica-
tions do not benefit much from Paralfetch: I/O requests
from text-based apps such as cp, gcc and find largely depend
on input parameters that can change with every launch; and
apps such as pwd and ssh are too small to amortize prefetch
overhead, and are usually warm started.

2.2 Disk Caching in Linux

Figure 1 provides a summary of the Linux I/O stack from disk
caching perspectives.
Page cache and buffer cache. The Linux kernel provides two
cache mechanisms for disk blocks in terms of API and unit
size [15]: The page cache holds file pages, whereas the buffer
cache contains data blocks corresponding to block devices.
The contents and lookup spaces of these caches are managed
using a radix tree for each regular file or block device file.



In EXT4 file system, blocks of data from regular files are
cached in the page cache, while the buffer cache is used for
caching metadata blocks (e.g., inode table blocks, directory
blocks, and extent blocks). The contents of regular files can
be prefetched using a combination of device number, inode
number, offset, and size. On the other hand, metadata blocks
can be prefetched using a combination of device number and
block number. It should be noted that there are no prefetching-
level dependencies among buffer-cached (metadata) blocks,
whereas I/O requests for page-cached (data) blocks are de-
layed until relevant metadata blocks are cached.
Slab for caching file system metadata at object granularity.
Metadata objects in EXT4 file system, namely, the inode,
directory entry, and extent, are smaller than a file system
block but must nevertheless be managed individually so that
important objects are kept in memory, even when the memory
is under pressure. Therefore, the Linux slab object allocator
caches these objects without reference to the contexts of the
buffer cache. Thus an inode can be simultaneously stored in
both the slab and buffer caches.
Page cache accessing methods. A process can copy the
contents of the page cache into a user buffer using a read or a
file-related syscall. Alternatively, a process can map the extent
of a file to its virtual address space using the mmap syscall.
In the latter case, attempting to access an unmapped address
in the page table causes a page fault. To reduce the number
of page faults, Linux employs an interesting feature, called
faultaround [49], which pre-faults a 64KB-aligned chunk of
the address space around the fault address.
Disk cache invalidation. The Linux kernel provides functions
to invalidate disk caches. A user or process with root permis-
sion can invalidate these caches by writing a predefined value
(“1” for the page and buffer caches, “2” for the slab cache,
and “3” for all these) into the /proc/sys/vm/drop_caches
proc file. This method can only invalidate unused entries with
zero reference counts.

2.3 Representative App Prefetchers
Windows prefetcher [37]. Since XP, Windows has included
a prefetcher for launch and system boot. The Windows
prefetcher is customized for HDDs, but it can also be used
with SSDs, although user configuration is required to make
best use of more capable SSDs. In its learning phase, the
copies of file-backed memory pages which are required by
an application are identified by the Windows working-set
manager. The generated information, which is file-level data,
determines the disk blocks to be prefetched during subsequent
application launches. By defragmenting these blocks to make
their file-level prefetch blocks correspond to their LBA order,
the Windows prefetcher optimizes the disk head movements
of HDD. This time-consuming process is scheduled to happen
every three days.
GSoC Prefetch [29], which was selected for the Google Sum-
mer of Code 2007, is a Linux-based prefetcher for HDDs. It

(a) SSD cold start scenario without Paralfetch

(b) SSD cold start scenario with Paralfetch
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Figure 2: SSD cold start scenarios with and without Paralfetch.
Si is the ith block requested from the SSD, and Ci is the
corresponding CPU computation. Paralfetch expedites an
application launch by exploiting parallelism of each resource
(i.e., multicore activation and internal parallelism on SSDs)
and utilizing these resources concurrently.

obtains launch-related block information in its learning phase
by first clearing the bit in every OS-managed page descriptor
(not page table) which indicates that the page has been ref-
erenced. After a predefined monitoring time (10 seconds by
default), GSoC Prefetch traces those referenced pages with
‘referenced’ bits on. It then extracts a file identifier (device
number, inode number, and offset) from each of the traced
pages. Next, GSoC Prefetch sorts the pages based on these
identifiers and stores the sorted pages in a file. On subsequent
launches, launch-related blocks are prefetched in the order
recorded in that file. This reduces both seek and rotational
latencies in HDDs. GSoC Prefetch has a defragmentation tool
similar to that in the Windows prefetcher.
FAST [24] is a recent Linux-based prefetcher for SSDs. It
starts by clearing the slab, buffer, and page caches. Then,
FAST begins its learning phase, during which it creates a
prefetch program by monitoring the LBAs of blocks using the
blktrace tool and converting them to prefetchable system
calls with arguments. On subsequent launches, FAST executes
this prefetch program at the same time as the application. Disk
blocks are prefetched in order without any I/O optimization.

2.4 Cold Start with Paralfetch
Figure 2a shows a cold start scenario without Paralfetch,
and Figure 2b shows the same scenario in which Paralfetch
runs the application concurrently with a prefetch thread. The
computations run on multiple CPU cores, in parallel with the
SSD accesses, which are issued in a way that exploits the inter-
nal parallelism of the SSD. This is effected by issuing concur-
rent asynchronous I/O requests using the command queuing
(CQ) feature. If an SSD does not support CQ, Paralfetch
merges I/O requests, which have consecutive LBAs and are
close in the block access sequence, so as to promote internal
parallelism.



Table 1: Metadata and data block requests required to launch applications with missing metadata blocks. Note that ‘regular’ files
include mmaped files, and that files mmaped by running applications are not subject to disk cache invalidation. The last column
shows the number of I/O operations that were not captured by Paralfetch, which varies from run to run.

Read requests traced by Paralfetch Number of missing Number of accessed files
Application Metadata accesses File data accesses metadata blocks regular mmaped Number of

(total size in KB) (total size in KB) detected files files missing I/Os
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Android Studio 1,330 (6,844) 3,845 (197,932) 58 954 10 38
Chromium Browser 612 (3,048) 1,135 (130,728) 37 629 108 34
Eclipse 565 (3,348) 1,669 (67,256) 28 744 328 49
GIMP 489 (2,620) 1,026 (38,512) 20 975 474 28
LibreOffice Impress 590 (2,900) 706 (83,004) 37 438 232 32
LibreOffice Writer 552 (2,800) 729 (83,824) 25 476 227 33
Okular 1,093 (5,720) 426 (23,640) 41 349 238 36
Scribus 840 (5,984) 1,560 (141,056) 35 1,230 682 21
VLC Player 682 (5,420) 444 (20,192) 41 375 104 32
Xilinx ISE 573 (3,024) 1,028 (176,504) 42 657 273 33
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Chromium Browser 496 (1,984) 2,017 (138,600) 40 473 68 41
Frozen Bubble 605 (2,420) 3,769 (32,992) 25 3,425 26 12
GIMP 618 (2,472) 1,863 (46,664) 38 991 296 47
LibreOffice Writer 596 (2,384) 911 (35,164) 33 395 154 36
Scratch 2 332 (1,328) 839 (48,580) 40 294 73 19
Xpdf 127 (508) 169 (7,236) 15 75 21 11
0 A.D. 206 (509) 669 (86,272) 19 162 139 21
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Asphalt 8 131 (988) 838 (217,240) 49 179 N/A 11
Dragon Quest 8 95 (852) 4,339 (333,812) 46 335 N/A 12
FIFA 16 UT 76 (772) 805 (166,120) 39 265 N/A 47
GTA SA 104 (560) 377 (82,928) 41 95 N/A 36
Truck Pro 96 (792) 1,792 (115,732) 41 175 N/A 19
Devil May Cry 237 (1,728) 1,904 (316,004) 45 407 N/A 19
The War of Mine 127 (696) 517 (128,300) 43 101 N/A 11

3 Paralfetch Design and Preliminary Results

3.1 Accurate Tracing
The benefit from an application prefetching is limited by
the tracing accuracy with which launch-related blocks are
traced. In particular, accurate tracing is essential to prevent
a launching application’s wait for missing blocks from disk
when several concurrent threads are causing lots of I/O con-
tention. Note that the threaded prefetching can marginally
benefit from Windows prefetcher and GSoC Prefetch which
cannot trace the block access sequence because they rely on a
snapshot of the working set or of the referenced pages after a
launch.

There are also issues with the tracing method used by GSoC
Prefetch: it only traces pages for regular files, and missing
metadata limits the benefit of prefetching; a significant num-
ber of pages are also accessed more than once during a launch.
This latter issue is particularly problematic because, when a
page with the ‘referenced’ bit set on is accessed for the second
time, Linux OS turns off the ‘referenced’ bit and promotes
the page from the inactive list to the active list. As a result,
some pages are never traced. In the case of Eclipse, we found
2,782 file-backed pages not traced.

Potentially, the highest accuracy would be achieved by
monitoring page faults and data accesses at all disk caching
layers (e.g., slab, buffer, and page caches). But such exhaustive
tracing would produce significantly more data than I/O-level
monitoring (37× during an Eclipse launch), incurring unac-
ceptable memory and computation overheads. Furthermore, a
log of I/O operations obtained by monitoring disk cache ac-

cesses is likely to include many useless cached entries created
by I/O operations of background tasks.

This issue is successfully mitigated by monitoring I/O re-
quests: In the learning phase, Paralfetch invalidates unused
entries in the disk cache, so that Paralfetch collects a proper
set of blocks for subsequent launches of the application. It
then records I/O requests for blocks not found in these caches
by instrumenting file system functions with I/O logging codes,
and these requests are used to prefetch those additional blocks
during launches. In this paper, we use the term log entry to
refer to a log of I/O request collected during a launch, while
the term prefetch entry refers to an entry used for prefetching
disk blocks. The latter includes arguments for prefetching
function calls.

Unfortunately, as mentioned earlier, the invalidation of disk
caches (slab, buffer, and page caches) is not perfect because
only unused entries can be invalidated; a working set of blocks
for running applications is always retained. This issue has
been overlooked in previous schemes (including FAST), i.e.,
their evaluation was restricted to system cold start scenarios.
Table 1 classifies traced blocks with Paralfetch. Note that
metadata blocks and mmaped file blocks are potential missing
blocks when using FAST. Since usually many user and system
processes run in the background, this issue can significantly
degrade tracing accuracy. For example, 225 files of this kind
were accessed by both LibreOffice Impress and LibreOffice
Writer (on a laptop) during a launch of either. Thus, an at-
tempt to trace launch blocks for LibreOffice Writer just after
LibreOffice Impress launched (and started running in the back-
ground) returns only 700 log entries (27,688 KB) compared



to 1,281 log entries (83,824 KB) during a system cold start.
We conducted further experiments by substituting Android
Studio, Chromium Browser, Eclipse, and GIMP for LibreOf-
fice Impress. Surprisingly, imperfect cache invalidation still
resulted in many missing data and associated metadata blocks:
5.0%, 12.0%, 14.4%, and 6.6% of the total in each case. The
launch time impact of missing blocks is significant as shown
in §5.2.

We have therefore developed two methods to detect missing
metadata and data blocks.
1) Finding missing metadata blocks. We first introduce
a file system-level dependency check, called missing meta-
data block detection, which identifies launch-related metadata
blocks (i.e., inode and extent blocks) that have not been traced
due to the imperfect invalidation of the slab and buffer cache,
but nevertheless share a dependency with traced data blocks.
To address this issue, Paralfetch implements a function
(§4.2) that tracks associated metadata blocks for each log
entry for a regular file. Table 1 shows that 15 – 58 missing
metadata blocks were found during launches, and these num-
bers vary with the number of irreclaimable entries in the disk
caches under use by running applications. When these miss-
ing blocks are found, Paralfetch inserts new log entries for
them just before other log entries of associated data blocks.
2) Page fault monitoring. Page cache invalidation is also
imperfect because file-backed pages which are dirty, under
writeback, or accessed through mmap, are not invalidated. To
trace pages which are dirty or under writeback, Paralfetch
flushes them out via a sync operation before the disk cache
is cleared. However, pages accessed through mmap, such as
shared library files, are more challenging. When these are
shared with running applications, tracing accuracy is compro-
mised. To address this issue, we arranged for Paralfetch
to trace previously untraced blocks accessed through mmap
calls by instrumenting the faultaround [49] handler with page
fault tracing code. The handler proactively maps 16 boundary-
aligned (page-cached) pages around the page-faulted address.

3.2 Prefetch Scheduling
Upon completion of collection of disk I/O requests during an
application launch, Paralfetch pre-schedules these requests
to speed up the prefetching phase, merging and reordering
requests so as to exploit the internal parallelism of an SSD.
Range merging. Merging small I/O requests into a single
large request enhances the throughput of an SSD [12, 27, 32,
43]. Figure 3b shows a range merge in which two requests for
blocks with consecutive LBAs that are within a predefined
I/O distance threshold are combined where the I/O distance is
defined as difference in the locations of blocks in the launch
sequence. This threshold prevents the merging of far-apart
log entries in the launch sequence, as they can hinder timely
prefetching of subsequent blocks. Overly-aggressive merg-
ing can be bad especially for applications with CPU-bound
launches, in which I/O optimization is less influential in meet-

(a) Original prefetch sequence

[2] 5, 8 [5] 13, 2[3] 16, 1 [4] 20, 1 [7] 17, 1[6] 22, 3

[2] 5, 10 [3] 16, 1 [4] 20, 1 [6] 22, 3

(b) Prefetch sequence after range merge with an I/O distance threshold of 3
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Contiguous (I/O distance = 5 - 2)
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Figure 3: Range merge. Merging nearby I/O operations into
a single large operation improves throughput while keeping
changes to the I/O order within a predefined limit so that the
target application and prefetch thread can run concurrently.
Range merge combines LBA-contiguous I/O requests of the
same type (e.g., metadata or data block) into the preceding
one.

ing prefetching deadlines. Figure 4 shows plots of prefetch
time against the I/O distance threshold on SSD, UFS flash,
and MicroSD. The performance gain from range merging tails
off as the threshold increases mainly because EXT4 tries to
locate metadata and data blocks for related files close together
in terms of LBA.
Metadata shifting. Every file system has its own particular
I/O dependencies for prefetching between metadata and data
blocks (and between metadata blocks). In EXT4, a request for
a data block can only be issued after the associated metadata
block, which contains the LBA of that data block, has been
read. The metadata for a data block is often requested just
before the corresponding data block.

Thus this dependency tends to limit the number of com-
mands that can be queued, and this in turn limits the effective-
ness of command queuing, which yields maximum benefit
when there are many commands in the queue which can po-
tentially be executed in parallel [39].
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Figure 5: Metadata shifting to boost the outstanding I/O size
in the command queue of an SSD controller. An I/O request
for data blocks should wait for the associated metadata blocks
to be read. By left-shifting I/O requests for metadata, more I/O
requests can be issued asynchronously. The shift size controls
the extent to which metadata blocks can be left-shifted.

This issue can be addressed by bringing forward requests
for metadata blocks. This is facilitated in EXT4, where there
are no read dependencies among buffer-cached (metadata)
blocks, while I/O requests for page-cached data blocks can
only be issued after associated metadata blocks are buffer-
cached. Figure 5a shows the processing of an example
prefetch thread, in which dependencies on metadata blocks
cause the command queue to become empty on two occasions.
Figure 5b shows how Paralfetch brings forward metadata
block requests in the prefetch thread to increase the interval
between requests for dependent blocks. Figure 6a shows that
the average prefetching time on a CQ-enabled SSD was re-
duced by 21.6% through shifting metadata requests forward
by 128 KB, when combined with the tracing of missing meta-
data blocks.

An SSD without CQ support can also benefit from shifted
metadata (Figure 6c): requests to the I/O scheduler can be
issued in advance, so that the storage driver receives a request
earlier from the I/O scheduler queue, rather than later by the
application; and an MMC/SD driver (for eMMC flash and SD
cards) overlaps flash access for the current I/O request with
DMA preparation for the next I/O request. A metadata shift
of 4 KB reduced prefetch times by 19.3% on the Raspberry
Pi 3 using a MicroSD.

Correctness. The read requests from the prefetch thread go
through disk caches, and hence reordering and merging of a
launch sequence have no implications on correctness. Even if
a prefetch entry is outdated, it only affects the launch perfor-
mance.

3.3 Parallelized Execution: Overlapping Ap-
plication Execution with Disk Prefetching

Timely prefetching can better overlap application execu-
tion with prefetching. Reordering or merging blocks far
apart could improve prefetch throughtput but could also hin-
der timely prefetching. Experimental results in Figures 7
and 8 substantiate the claim by showing prefetching through-
put does not always correspond to launch performance.
Paralfetch avoids this pitfall by tailoring metadata shift
and range merge dynamically. A challenge is how to find
near-optimal threshold values in an automatic manner. To ad-
dress this, Paralfetch employs dynamic scheduling which
reschedules prefetch entries with an increased I/O distance
threshold and/or metadata shift size when a prefetching bot-
tleneck is detected.

The ability of shifting metadata and merging nearby re-
quests to reduce prefetching time on SSD-based systems is
limited by contentions between I/O requests from the prefetch
thread and I/O requests which must be issued by the appli-
cation because they were omitted from the prefetch thread.
As shown in Table 1, we found that an average of 2.8% of
requested blocks were not traced despite the improved tracing
features of Paralfetch. These missing blocks are inevitably
requested by the application, which waits until the blocks are
loaded from the disk. Contention between the application and
the prefetch thread becomes critical when there are too many
I/O requests in the I/O scheduler or command queue [13] in
an SSD. This can occur when metadata blocks are shifted
too far, or when an oversize I/O request is created by range
merging with a large threshold. From an experiment with
Eclipse, we found that the effect of missing blocks on latency
was increased by 3.2× and 8.7× when the largest allowable
shifts were 128KB and 256KB, respectively.

To avoid the need to optimize the thresholds for meta-
data shifting and range merge over a number of trial runs,
Paralfetch gradually increases the threshold if prefetching
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Figure 6: Normalized prefetching times for different metadata shift sizes.
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Table 2: Default configuration for prefetch optimization.

SSD without CQ feature SSD with CQ feature

I/O distance threshold Starts at 8 and
for range merging can be increased

8

Metadata shift size Starts at 64 and
(KB) for metadta shifting

4
can be increased

is not effective. Next, we describe how to control the extent
of dynamic scheduling and how to measure the effectiveness
of prefetching.
Optimizing prefetch entries with dynamic scheduling. Ini-
tially, Paralfetch uses default thresholds for metadata shift-
ing and range merge shown in Table 2. It subsequently in-
creases the threshold for only one of these methods, depend-
ing on the availability of CQ support. The metadata shifting
threshold is increased in increments of 16KB and the I/O
distance threshold in increments of 4.

The best combination of scheduling methods depends on
the type of disk. For example, on a CQ-supported SSD, range
merge gains little beyond a threshold of 8, which can, there-
fore, be used as a default during the learning phase. Similarly,
metadata shifting yields little benefit on MicroSD-based de-
vices without CQ support beyond a threshold of 4KB.
Detecting prefetch bottleneck. An application experiences
more context switches when it has to wait for the blocks re-
quested by the prefetch thread, implying that the prefetch
thread is not prefetching in time. Specifically, the prefetch
thread collects the number of context switches made by
the launching application during the prefetching period.
Paralfetch ends dynamic scheduling if the quantity of con-
text switches is below a user-defined threshold (by default,
5% of the number of prefetch entries). The overall disk read

size is checked by Paralfetch in order to remove the results
from the warm cache.

4 Implementation of Paralfetch

This section details the workflow of Paralfetch and the
interaction among its main components described in Figure 9.

4.1 Launch Phase Management

Native Linux: The next launch type for each application
is determined by reading the 9-th byte of the header of
its executable and linkable format (ELF) binary file. This
byte (referred to as the phase byte) is normally used for
memory alignment (padding), and has a default value of 0.
It is set to PHASE_LEARNING (3) for a learning phase and
PHASE_THREADED_PREFETCHING (1) for a prefetching phase.
A user can also set this value to PHASE_DISABLE (9) to disable
prefetching altogether, for small applications or utilities that
frequently experience warm starts. The phase byte is passed
to the ELF binary loader (load_elf_binary).
Paralfetch supports two modes for launch phase manage-

ment. In manual mode, a user explicitly selects applications
that will use Paralfetch, by calling pfsetmode, which takes
a value for the phase byte and an ELF binary path as argu-
ments. pfsetmode can be also invoked from a desktop icon
(i.e., mouse right-click menu). In contrast, Paralfetch is
applied to all installed applications in automatic mode, which
is similar to the management method used in FAST.
Android: zygote is a process that creates a native Android
application in Java by forking and loading the main class
of a program [30]. zygote invokes the handleChildProc
method to create and run a new Android application. To re-



Paralfetch Framework v4

■ Invalidate unused disk cache entries
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution 
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

Learning phase workflow Prefetching phase workflow

If prefetching is slow

Learning
thread

Prefetch thread

Reschedule thread

Update

(Extended) Log entries
(+ seq#, LBA, two Red-black tree nodes)

Red-black tree
sorted by seq#

Red-black tree
sorted by LBA

Log entries
(dev#, inode#, offset, size)

Figure 9: Paralfetch workflow. Boxes with dotted edges de-
note threads, and boxes with solid edges identify the three
major components of Paralfetch. During a learning phase,
Paralfetch records an I/O log as a form of log entry. Upon
the completion of the launch, collected log entries are passed
to missing metadata detector, generating additional log en-
tries for missing metadata. Then, the log entries are passed
to pre-scheduling functions as a form of red-black tree. The
details of pre-scheduling are described in Algorithm 1 and 2.

duce launch times, zygote preloads classes and resource files
used by many applications, quickly creating a process which
shares these preloaded classes. Unlike native Linux processes,
a native Android process remains in the background even after
a user quits the application, and can be resumed by moving
the process to the foreground (the resuming procedure). How-
ever, when free memory is in short supply, Android wakes up
the low memory killer (LMK) to reclaim memory space by
removing less important processes completely.

To interface Paralfetch with the Android platform, we
created a file named fetch_app using sysfs, which pro-
vides a communication interface between the Linux ker-
nel and a user process. On Android, Paralfetch uses au-
tomatic launch management mode, in which Paralfetch
tailors each launch to the type of application. When the main
class name of an application is written to the fetch_app file,
Paralfetch determines how to perform the launch phase
based on the following rules: if there is no corresponding
<class_name>.pf file2 in the /persist/paralfetch direc-
2<class_name>.pf file is equivalent to <app_name>.pf in native Linux.

tory, then Paralfetch starts a learning phase for that applica-
tion; but if the file exists, then Paralfetch performs prefetch-
ing. To implement this, we augmented the handleChildProc
method to write the main class name of the application being
launched to the fetch_app file. Paralfetch does not begin
a prefetching for the resuming procedure that does not invoke
handleChildProc.

4.2 Learning Phase
I/O logging. To collect blocks required for a launch,
Paralfetch first invalidates unused entries in the slab (for
file system objects), buffer and page caches, and temporar-
ily disables the inode read-ahead functionality of EXT4 so
as to prevent I/O contention resulting from unnecessary in-
ode blocks being read during the prefetching phase. Next,
Paralfetch sets a trace timeout, with the default value of
30 seconds, and also sets the trace_flag to true to acti-
vate logging. Then, Paralfetch resumes loading and ex-
ecution of the application. During the execution, the I/O
requests for buffer-cached blocks caused by disk cache
misses are logged by code introduced into the metadata ac-
cess function (submit_bh_wbc). Similarly, code introduced
into the functions ext4_readpage, ext4_readpages, and
filemap_map_pages logs read requests associated with page-
cached blocks.
Page fault monitoring. The filemap_map_pages function
is called by the OS when a page fault occurs. It pre-faults
the 16 boundary-aligned pages which contain the faulting
page, provided that these pages are in the page cache [49].
Performing this reduces the overhead of tracing page faults.
Tracing missing metadata blocks. Block tracing ends when
the trace times out, and the launch is deemed to be com-
plete when fewer than 10 block read requests occur in a sec-
ond [25]. We refer to the corresponding block of an appli-
cation as the completion block. To detect missing metadata
blocks, we implemented the ext4_fiedep function, a variant
of the ext4_fiemap function that must in any case access
the metadata blocks associated with file blocks during the
mapping of logical-to-physical extents. Unlike the original
version that returns file extents for arguments (i.e., a file and
query range of the file), the ext4_fiedep function returns a
list of associated metadata blocks along with file extents.

As shown in Figure 9, Paralfetch builds two red-black
binary search trees for log entries that are used for prefetch
scheduling: Paralfetch reads log entries in their access
order and inserts each of them to the trees. It invokes the
ext4_fiedep function for each log entry for a regular file. If
the corresponding metadata blocks are missing from the tree,
Paralfetch allocates and inserts new log entries for them
right before the entry for the corresponding data blocks.

This operation consumes little CPU time (17 ms for An-
droid Studio) and incurs no disk I/Os because the procedure
runs in the warm cache condition (i.e., after the completion
of a launch process).



Algorithm 1: Metadata Shift Procedure
Input: (Extended) log_entries sorted by their access order

(rbtree_seq), Metadata shift size (ms_size)
Result: Metadata-shifted log_entries (accessed via rbtree_seq)

1 log← first_log_entry(rbtree_seq)
2 out_meta_size← 0
3 while log ̸= NULL do
4 if is_metadata_log_entry(log) then
5 move_to_MS_queue(log)
6 out_meta_size← out_meta_size + log.size

/* expired entries (log.expire <= out_meta_size)
in wait queue are moved to MS queue */

7 move_expired_wait_queue_entries_to_MS_queue()
8 else
9 log.expire = out_meta_size + ms_size

10 move_to_wait_queue(log)
11 log← next_log_entry_seq(log)
12 drain_wait_queue_entries_to_ms_queue()
13 rebuild_rbtree_seq_to_correspond_to_ms_queue_order()

Algorithm 2: Range Merge Procedure
Input: (Extended) log_entries sorted by their LBA (rbtree_lba) and

access order (rbtree_seq), IO distance threshold (dist_thr)
Result: Range-merged log_entries (accessed via rbtree_seq)

1 curr← first_log_entry(rbtree_lba)
2 next ← next_log_entry_lba(curr)
3 while next ̸= NULL do
4 if curr.inode_num = next.inode_num &
5 curr.start_lba + curr.size = next.start_lba &
6 next.seq_num − curr.seq_num <= dist_thr then
7 curr.size← curr.size + next.size
8 unlink_log_entry_from_rbtrees_lba_and_seq(next)
9 remove_log_entry(next)

10 next ← next_log_entry_lba(curr)
11 continue
12 curr← next
13 next ← next_log_entry_lba(curr)

Pre-scheduling. Paralfetch schedules the collected log en-
tries. Algorithm 1 describes the procedure of metadata shift:
Paralfetch accesses log entries in their access order (lines
1, 3, 11). A log entry for metadata blocks moves right away to
the MS queue3 (lines 4–5), while a log entry for data blocks
remains in the wait queue until enough subsequent metadata
blocks (at least the metadata shift size) are moved to the MS
queue (lines 9–10) in order to left-shift metadata I/O requests
When enough metadata blocks are left-shifted, the accompa-
nying wait queue log entries are transferred to the MS queue
(line 7). Finally, the red-black tree rbtree_seq is rebuilt with
the metadata-shifted order (line 13) once the remaining log
items in the wait queue are transferred to the MS queue (line
12).

To perform range merge (as described in Algorithm 2),
Paralfetch accesses log entries in their LBA-sorted order.
This makes it easy to detect log entries that have consecu-
tive LBAs (line 5) of the same inode (line 4). Range merge
then combines consecutive I/O operations (lines 7–9) that are
3The MS queue stores the metadata-shifted order of log entries.

within a predefined threshold for I/O distance in the launch
sequence (line 6).

Different thresholds of metadata shift and range merge
are used for SSDs with and without command queuing
(CQ). To discover whether an SSD supports CQ, the
Paralfetch initialization process, executed by the systemd
daemon or a startup script (e.g., rc.local), examines
sysfs files. For example, the CQ support for an SATA
SSD is determined by the value of /sys/block/<root
device>/device/queue_depth.
Storing scheduled log entries. Scheduled log entries (i.e.,
prefetch entries) are stored in the file <app_name>.pf (e.g.,
eclipse.pf for Eclipse). This file consists of a 24-byte
Paralfetch header, followed by prefetch entries. The header
contains the version number, the inode number of the exe-
cutable file, the metadata for dynamic scheduling, the number
of obsolete entries, and the number of prefetch entries. Each
prefetch entry contains the device number, the inode number,
its offset and size. The inode number for a metadata block is
set to 0. The size of each prefetch entry is 20(24) bytes on a
32(64)-bit system.

4.3 Prefetching Phase
During the prefetching phase, Paralfetch creates the
prefetch thread, following the sequence stored in the
<app_name>.pf file.

For EXT4 file system, Paralfetch uses the
__breadahead function to prefetch metadata blocks,
and the force_page_cache_readahead function to
prefetch data blocks for regular files. While these functions
try to perform block caching asynchronously (or in a
non-blocking manner), data blocks can be prefetched
asynchronously only when the associated metadata blocks are
ready. Paralfetch uses explicit I/O plugging [3] to merge
contiguous metadata (bio) requests into a single request,
which is then delivered to the dispatch queue of device
drivers. This reduces the amount of computation required for
dispatching and completing I/O requests.
Changing from prefetching back to the learning phase.
The set of blocks required for the first launch of some appli-
cations is significantly different from that required for sub-
sequent launches. For example, Eclipse and GIMP only con-
figure their environments on their first launch: Paralfetch
detects this behavior by counting I/O requests issued by an ap-
plication during its launch, which is easily done by counting
synchronous readahead requests [38] in the Linux readahead
framework [33]. If the count is greater than 10% of the to-
tal number of prefetch entries, Paralfetch returns to the
learning phase.

5 Evaluation
5.1 Methodology
Launch time measurement. Like [24], we measure the
launch time of an application between two events: in the
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Figure 10: Launch times on a laptop equipped with a QLC SSD, normalized to cold start times. Optimizations for Paralfetch
are incrementally applied.

case of Linux, the launch is deemed to start when the
load_elf_binary function is called, and to finish when the
completion block request has itself completed. To identify the
latter event, we remove the completion block request from
the prefetch file, allowing it to be issued by the application.
After a warm start, we call posix_fadvise with the argu-
ment POSIX_FADV_DONTNEED to evict the completion block
request from the page cache.
Comparisons with other prefetchers. We ported the GSoC
Prefetcher to the Linux kernel 5.4.51 and set its trace timeout
to the value used by Paralfetch. We temporarily modified
Paralfetch to bring its operation in line with three key fea-
tures of the GSoC Prefetcher: 1) the way in which it traces ref-
erenced file pages during an application launch, 2) its method
of pre-scheduling disk I/O using inode numbers and in-file
offsets as sort key, and 3) the way in which it holds an appli-
cation until prefetching is completed, rather than allowing the
application and the perfetcher thread to compete.
FAST only supports EXT3 file system, so we temporarily

modified Paralfetch’s function for detecting missing meta-
data to support EXT3. We could only compare FAST with
Paralfetch on a PC because the Android and Raspbian OS
do not support EXT3 file system.

5.2 On a PC

We conducted experiments on a laptop PC equipped with
an Intel Core i5-8265 CPU and 16 GB of RAM, running
Linux kernel 5.4.51. This PC has a 1 TB Samsung 860 QVO
QLC SSD, which uses native command queuing. We tested
Paralfetch, GSoC Prefetch and FAST on 16 applications, 6
of which were games. The 10 non-game applications were An-
droid Studio, Chromium Browser, Eclipse, GIMP, LibreOffice
Impress, LibreOffice Writer, Okular, Scribus, VLC player, and
Xilinx ISE; and the 6 games were Ancestors Legacy, Atom
RPG, Battle Tech, Pillars of Eternity 2, Tyranny, Witcher 3.

QLC SSDs are typically equipped with a small SLC (single-
level cell) cache. To reduce the effects of this cache, we con-
ducted evaluation after installing all benchmark apps.
Comparison with the GSoC prefetcher. Figure 10 shows
Paralfetch to reduce the average launch time of these 16
applications by 44.2% with pre-scheduling alone. After four
launches of each application, a 1.8% more reduction was
achieved on average by using dynamic scheduling to increase
prefetch throughput.

It should be noted that the naïve use of excessive metadata
shift (of 256KB) led to a 3.8% increase in average launch
time: as previously shown in Table 1, Paralfetch fails to
trace a few launch blocks. A launching application should
wait for these missing blocks to be read while a large number
of outstanding I/O requests due to excessive metadata shift
increase the waiting time.
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Figure 11: Comparison of Paralfetch and FAST launch times
on a laptop PC, normalized to cold start times. Tracing of each
application is performed when LibreOffice Writer is running
in the background. The results show that running applications
can significantly degrade tracing accuracy of FAST and its
performance benefit.

Comparison with FAST. FAST is the closest to ours in that
its target media is SSDs. In §3.1 we described how disk cache
clearing affects tracing accuracy. The most serious drawback
of FAST seems to be that the accuracy of its tracing depends
greatly on the other applications that are running, because
files accessed by these applications through mmap are not
traced. Also, metadata used by the applications are not traced.
We believe that this issue is frequently occurred in common
scenarios. Figure 11 shows the significance of this issue. Con-
versely, the page fault monitoring and detecting missing meta-
data used by Paralfetch leads to launch times similar to that
of a warm start.
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Although tracing under
a system-cold state favors
FAST, the launch times av-
eraged across all 16 appli-
cations were 11% less with
Paralfetch than with FAST
as shown in Figure 12. The
relatively poor performance
of FAST can be attributed to
its reliance on system calls,
which limits both the accu-
racy of tracing and its scheduling options, in particular its use
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Figure 13: Launch times on a Raspberry Pi 3, normalized to cold start times. Optimizations for Paralfetch are incrementally
applied.

of synchronous I/O for prefetching metadata blocks makes it
difficult to exploit parallelism.

5.3 Raspberry Pi 3

Our second evaluation of Paralfetch was conducted on a
Raspberry Pi 3 running the Raspbian OS (Linux kernel 4.9.56)
with a Samsung 16 GB MicroSD (class 10). This flash storage
does not support CQ (although more recent A2-class MicroSD
has both CQ and an SLC cache).

We used 13 applications, 8 of which were games: Frozen
Bubble, GIMP, LibreOffice Writer, Chromium browser,
Scratch 2, Xpdf, 0 A.D., Extreme Tux Racer, LinCity, Mind-
craft, Open Arena, Quake 3 Arena, and Xmoto. The launch
times in Figure 13 show that frequent flash accesses con-
tribute about 45% of the delay in application launches. This
provides a considerable opportunity for I/O scheduling. After
four launches with dynamic scheduling, launch times are fur-
ther reduced by an average of 4.8% compared to Paralfetch
with pre-scheduling only. We attribute this reduction to: 1)
an application launch on a Raspberry Pi 3 board is a disk-
bound process, and 2) the throughput of a MicroSD is usually
improved by merging I/O operations: for example, the band-
width of random reads of 128KB on the MicroSD we used
is 28.6 MB/sec, which is 6.7× higher than that of 4KB (only
4.3 MB/sec). Chromium and Xpdf application launch times
are more heavily influenced by disk performance than by
CPU performance. Due to the significant limitations of timely
prefetching with prefetch scheduling, it is difficult to achieve
warm start launch performance, especially for SSDs without
command queuing.
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Figure 14: Launch times on an Android smartphone (Google
Pixel XL), normalized to cold start times.

5.4 Google Pixel (Android)

Paralfetch can be easily ported to Linux variants, such as

Android. Android has its own launch mechanism, and hence
we needed to modify 180 lines of the Android source code to
accommodate Paralfetch.

To test Paralfetch on Android, we used a new set of
seven games: Asphalt 8, Devil May Cry, Dragon Quest 8,
FIFA 16 UT, GTA SA, The War of Mine, and Truck Pro. We
measured the launch times for these games on a Google Pixel
XL smartphone with UFS flash (which supports CQ) running
Android 8.0 (Oreo) with the Linux kernel 3.18.52. As shown
in Figure 14, the pre-scheduling performed by Paralfetch
reduced launch times by 11% on average, which equates to
as much as 3.5 seconds for Dragon Quest 8. However, dy-
namic scheduling offers little benefit because 1) application
launches are CPU-bound (86% on average in our benchmarks)
rather than disk-bound, and 2) launches encounter little depen-
dencies between metadata and data blocks. Another distinct
characteristic of an Android app launch is that a number of
write and fdatasync syscalls are issued by SQLite during
the launch, making a gap between the times for a warm start
and a cold start with Paralfetch.

5.5 Overhead

We measure Paralfetch’s overheads on a laptop PC from 4
aspects: tracing, pre-scheduling, prefetching and storage.
Tracing overhead. The I/O-based tracing used by
Paralfetch has a low instrumentation overhead, and in
most cases log entries are relatively short (e.g., less than 3000
entries). Android Studio is an exception, as it creates lots of
log entries. Nevertheless, the difference in cold start launch
time with and without Paralfetch was only 136ms. Disk
cache invalidation can produce some latency, but this does
not affect the working set of pages. Thus, it should not affect
the users. In any case, the cache is only invalidated during
the learning phase.
Pre-scheduling overhead. In our experiments, the time re-
quired by the background jobs which perform pre-scheduling,
including missing metadata detection, metadata shift, and
range merge, varied between 42ms for VLC Player and 153ms
for Android Studio, whereas FAST took 21 seconds to gener-
ate the prefetch program for Android Studio. When there is
an idle CPU core, pre-scheduling delays can be hidden from
users because Paralfetch creates a dedicated thread for that.



Prefetching overhead. Paralfetch employs threaded
prefetching, imposing extra overhead from management per-
spective. However, we observed that threaded prefetching
can reduce CPU usage for an application launch in the cold
start. As shown in Figure 2, a synchronous I/O incurs two
context switches. On the other hand, the asynchronous I/O
requests issued by the prefetch thread significantly reduce the
overall number of context switches. In our sampling-based
CPU utilization measurement [22], we found that the number
of context switches during a launch of Android Studio with
Paralfetch was reduced from 9,902 to 1,035, resulting in a
3.2% reduction in CPU usage.

In the warm start where prefetching is unnecessary,
Paralfetch still runs the prefetch thread, but this only in-
curs a delay of hundreds of microseconds if an available CPU
core exists. Even if there was no available CPU core, where
prefetching overhead could not be hidden, Paralfetch ex-
tended Android studio launch by only 2.8ms for (Eclipse by
3.1ms, which was the worst case).
Storage overhead. Paralfetch used 672 KB of SSD to store
the <app_name>.pf files for the 16 applications, whereas
FAST required 8.2 MB.

6 Future research direction

Non-intrusive tracing. Paralfetch instruments some ker-
nel functions to trace disk accesses. The (low) instrumentation
overhead can be effectively removed by employing dynamic
instrumentation tools, such as SystemTap [55] and eBPF [56].
Sophisticated prefetch scheduling. Paralfetch applies
metadata shifting and range merging to the entire launch
sequence, leaving room for further improvement: by apply-
ing prefetch scheduling only to prefetch-bottlenecked regions
of the launch sequence, Paralfetch can avoid unnecessary
I/O contention between the prefetch thread and the launching
application, achieving a better launch performance.
Prefetch scheduling considering internal behaviors of
disks. If Paralfetch schedules prefetch entries consider-
ing internal behaviors and performance of storage devices,
it can schedule them better at the pre-scheduling stage, thus
reducing the need for rescheduling with dynamic scheduling.

7 Additional Related Work

Previous application prefetchers are discussed in §2. We
now summarize various other approaches to reducing applica-
tion launch times, which are orthogonal or complementary to
Paralfetch.
Predictive disk prefetchers, such as Preload [14] and Win-
dows Superfetch [37], analyze the pattern and frequency of
application usage, predict the applications that are likely to be
loaded soon, and then preload them. Falcon [42] is a predictive
prefetcher that considers mobile context such as location and
battery state. Falcon launches an application in advance rather
than merely prefetching launch-related blocks. Obviously, the

merit of this strategy depends heavily on the accuracy of the
prefetcher’s predictions [34].

General-purpose disk prefetcher. It has been demonstrated
that general-purpose prefetching [11, 28] can also be bene-
ficial in reducing application launch times. However, it can
limit the accuracy of tracing launch-related blocks because
block-level I/O patterns depend greatly on the contents of
disk caches.

A block I/O cache provides another way of reducing latency.
Intel Turbo Memory [31], Intel Smart Response Technol-
ogy [51], and AMD StoreMI [52] store delay-sensitive data in
a relatively fast SSD and other data in a larger region of slower
storage. A similar behavior is provided by software caching
methods, which operate in the device mapping layer [1] and
the block layer [2].

I/O scheduling can reduce I/O contention between a launch
process and background processes. Several schemes have
been proposed: FastTrack [16] prioritizes I/O requests gener-
ated by the foreground application, and the BFQ I/O sched-
uler [10] gives new processes extra I/O bandwidth. Boosting
the priority of an I/O request, which is issued asynchronously
but results in blocking the issuing process, can also expedite
a launch [21].

Memory management can also reduce latency. Re-assigning
pages from background apps to foreground apps can improve
user experience of mobile operating systems [44]. Similarly,
pre-swapping of unused memory can reduce delays by avoid-
ing page reclamation latencies [45]. These schemes can re-
duce app launch times by timely provision of memory when
it is under pressure.

8 Conclusion

We have presented Paralfetch, which achieves launch per-
formance close to the warm start through more accurate trac-
ing, pre-scheduling for fast I/O reads, and prefetch thread over-
lapping. Paralfetch incurs negligible overhead in terms of
CPU, memory, and storage. We have also shown Paralfetch
to significantly outperform existing prefetchers on various
personal computing/communication devices running Linux.
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