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Abstract— Understanding and learning the actor-to-X inter-
actions (AXIs), such as those between the focal vehicles (actor)
and other traffic participants (e.g., other vehicles, pedestrians)
as well as traffic environments (e.g., city/road map), is essential
for the development of a decision-making model and simulation
of autonomous driving (AD). Existing practices on imitation
learning (IL) for AD simulation, despite the advances in the
model learnability, have not accounted for fusing and differen-
tiating the heterogeneous AXIs in complex road environments.
Furthermore, how to further explain the hierarchical structures
within the complex AXIs remains largely under-explored. To
overcome these challenges, we propose HGIL, an interaction-
aware and hierarchically-explainable Heterogeneous Graph-
based Imitation Learning approach for AD simulation. We
have designed a novel heterogeneous interaction graph (HIG) to
provide local and global representation as well as awareness of
the AXIs. Integrating the HIG as the state embeddings, we have
designed a hierarchically-explainable generative adversarial
imitation learning approach, with local sub-graph and global
cross-graph attention, to capture the interaction behaviors and
driving decision-making processes. Our data-driven simulation
and explanation studies have corroborated the accuracy and
explainability of HGIL in learning and capturing the complex
AXIs.

I. INTRODUCTION

Imitation learning (IL) for autonomous driving (AD) sim-
ulation aims to capture a cost function or a policy from
the human driver demonstrations (e.g., real-world driving
datasets) [1], [2]. In the IL setting, the actor, i.e., the focal
vehicle, interacts with other traffic participants (e.g., other
vehicles, pedestrians) as well as the traffic environments
(e.g., map topology), forming the diverse scenes of the actor-
to-X interactions (AXIs). These AXIs involve the behaviors
of car following, lane changing, cutting in when interacting
with other vehicles and road contexts (e.g., closure and road
work), as well as the responses to pedestrians (e.g., yielding
at a crosswalk).

Understanding and learning such complex AXIs is essen-
tial for designing the decision-making models and simulation
of AD systems. Despite the recent IL advances [2]–[4],
existing studies have not accounted for the following two
major designs that are critical for interaction awareness and
model explainability of an autonomous driving simulation
framework:

(1) How to fuse and differentiate heterogeneous AXIs:
Learning the decision-making process of AXIs performed by
the human drivers resides in understanding the contextual
dependencies between the actor (the focal vehicle) and
other traffic participants as well as the traffic environments.
However, the same human driver maneuver behaviors (e.g.,
turning, deceleration) may result from various heterogeneous

contexts of AXIs. Existing feature representations such as 2D
rasterization [5], and homogeneous graphs [6] of the actor’s
mobility features (e.g., motion information) and surrounding
contexts (e.g., map information and topology) may not
necessarily differentiate these AXIs.

(2) How to enable the hierarchical explanation of
IL for AD simulation: In the model simulation studies,
understanding the global and local contexts of the human
driver demonstrations hinges on tracing and dissecting the
decisions of the actor. Specifically, responses to the global
contexts, i.e., incoming general traffic conditions and map
topological information (e.g., road work closure or highway
exits), and those to the local contexts, i.e., the nearby traffic
participants, can be interleaving with each other, and lead
to complex AXI outcomes. Transparency requirements for
autonomous driving simulation [7], [8] have established the
needs of providing the hierarchical explainability to enable
more trustworthy human-vehicle interactions [7], which,
however, remains largely under-explored.

To overcome the above-mentioned gaps, we pro-
pose HGIL, a novel interaction-aware and hierarchically-
explainable Heterogeneous Graph-based Imitation Learning
framework for autonomous driving simulation. Towards this
framework, we have made the following three major contri-
butions:

(a) Heterogeneous Interaction Graph Fusion for AXIs:
We have designed a heterogeneous interaction graph (HIG)
representation as the state embeddings of our imitation learn-
ing designs, characterizing the various objects involved in
AXIs as the nodes and their interplay as the edges. To infuse
the complex AXI scenes, we have derived within the HIG the
sub-graph structures, which account for the heterogeneous
interactions among the actor, other traffic participants (e.g.,
other vehicles and pedestrians in our studies), and lane
topology, leading to the enhanced learnability compared with
the existing IL approaches.

(b) Hierarchically-Explainable IL Designs: Based on the
heterogeneous interaction graph fusion, we have designed
the novel hierarchical explanation designs for HGIL, via the
local sub-graph attention and global cross-graph attention
within the HIG. The proposed hierarchical explanation de-
signs differentiate the contextual dependencies between the
local and global observations, yielding the traceability of
the decision-making process within the autonomous driving
simulation.

(c) Data-driven Simulation and Explanation Studies:
We have conducted extensive experimental studies on the Ar-
goverse v2 dataset [9] with 40,000 driving scenes in complex



urban scenarios to validate the accuracy and explainability
of our proposed HGIL in learning and capturing driving
behaviors for AD simulation. Our simulation results have
demonstrated that our HGIL outperforms the other state-
of-the-art approaches (including [10]–[12]), and achieves
hierarchical explainability regarding the AXIs.

II. RELATED WORK

We briefly review the prior studies in two categories.
• Graph Representations for Motion Modeling: Prior

motion modeling and planning studies for AD [5] have
considered vectorized feature encoding, such as 2-D rasteri-
zation of the bird’s-eye view (BEV), of the vehicle’s mobility
features and surrounding contexts. However, existing 2-D
rasterization, processed by feature convolution [13], may not
fully capture the interplay of the objects with the actor in
the complex traffic scenes. Therefore, graph neural networks
have recently attracted attention to represent the relations
of the objects in the traffic environments [6]–[8]. For in-
stance, Tang et al. [8] studied the neural relation inference
to generate the interactive behavior interpretation. Different
than the above works, we have designed within HGIL
the heterogeneous interaction graph (HIG) fusion, which
provides the hierarchical characterization and explanation of
the interactions and relations of the actor (the focal vehicle)
with different types of traffic participants at the complex
traffic scenes.

• IL for Autonomous Driving Simulation: Deep IL
has been recently adopted for AD simulation and model
development to capture the cost function or policy from the
human driver demonstration data [2], [11]. Compared with
inverse reinforcement learning (IRL) that is usually expen-
sive to run and difficult to scale [14], generative adversarial
imitation learning (GAIL) [15] generates the policy without
capturing the cost function, and is able to scale in complex
and spacious traffic environments. Different from the above-
mentioned studies, our IL approach in HGIL provides a novel
state embedding design based on HIG, which provides het-
erogeneous representability and hierarchical explainability.

III. GRAPH & PROBLEM FORMULATION

A. Heterogeneous Interaction Graph Representation
Towards interaction awareness and hierarchical explain-

ability, we formulate the surrounding contexts of the actor
(focal vehicle) at the t-th timestamp into a heterogeneous
interaction graph (HIG). Each HIG consists of multiple sub-
graphs that characterize the actor’s local relations with the
surrounding objects in different types of AXI scenes. All the
sub-graphs share the node of the actor (the focal vehicle).
Specifically, at each timestamp t, HGIL accounts for the node
features of the actor as

V(f)
t =

[
x(f)t ,y(f)t ,v(f)t ,θ

(f)
t ,∆x(f)t ,∆y(f)t

]
∈ R6, (1)

where x(f)t , y(f)t , v(f)t , and θ
(f)
t correspond to the actor’s

position coordinates (unit: m), instantaneous speed (unit:
m/s), and heading angle (unit: rad) in the global (earth)
coordinate system under the bird’s eye view (BEV). ∆x(f)t =

x(f)t − x(f)t−1 and ∆y(f)t = y(f)t − y(f)t−1 respectively denote the

displacements of the actor w.r.t. the x and y axes from the
preceding timestamp t −1.

Actor-to-Vehicle Sub-graph Actor-to-Pedestrian Sub-graph Actor-to-Lane Sub-graph

Fig. 1: Illustration of an HIG representation in HGIL.

In this prototype study, we take into account the following
three types of sub-graphs within the HIG representation
(illustrated in Fig. 1), while our HIG design is general
enough to be extended to other types of AXIs given the
availability of other interacting objects. HGIL determines the
relations of the actor with other objects through the local sub-
graph and global cross-graph attention mechanisms (detailed
in Sec. IV-B).

(a) Actor-to-Vehicle Sub-graph G(c)
t : We form G(c)

t by
including the actor and the peer vehicles within a range from
the actor as the nodes (say, 25m in our study). For each
vehicle i of the K nearest peers observed (i ∈ {1, . . . ,K}),
we find its node feature as

V(c)
t,i =

[
x(c)t,i ,y

(c)
t,i ,v

(c)
t,i ,θ

(c)
t,i ,d

(c)
t,i

]
∈ R5, (2)

i.e., its global coordinates, speed, heading direction, as well
as the distance (unit: m) from the actor. We let V(c)

t ∈RK×5

be the node features of all the K nearest peer vehicles at
the timestamp t. Let E(c)

t ∈ R(K+1)×(K+1) be the adjacency
matrix representing the edges from the actor node to its peer
vehicles at the timestamp t, where the elements in E(c)

t are
initialized as ones for the edges between the actor and peer
vehicle nodes, and zeros otherwise.

(b) Actor-to-Pedestrian Sub-graph G(p)
t : Similar to G(c)

t ,
we form G(p)

t that includes the pedestrians that are within a
range (25m in our study) from the actor. We find the cor-
responding pedestrian node feature j ∈ {1, . . . ,P} as V(p)

t, j =[
x(p)t, j ,y

(p)
t, j ,v

(p)
t, j ,θ

(p)
t, j ,d

(p)
t, j

]
∈ R5, i.e., the global coordinates,

velocity, heading direction, and distance of the pedestrian
from the actor. We let V(p)

t ∈ RP×5 be the node features
of all the P nearby pedestrians at the timestamp t. We
similarly define E(p)

t ∈R(P+1)×(P+1) as the adjacency matrix
representing the edges from the actor node to the nearby
pedestrians, where the elements in E(p)

t are initialized as ones
for the edges between the actor and pedestrian nodes, and
zeros otherwise.

(c) Actor-to-Lane Sub-graph G(l)
t : To model the interac-

tion between the actor and the map topology (e.g., when
approaching the intersection or exit), we divide the road
lane into multiple segments (each is 25.45m on average), and
represent them by the nodes of a series of coordinates in the
BEV. For each of the R closest road segment m ∈ {1, . . . ,R}
within a range (10m in our study) from the actor, we find
the lane node feature V(l)

t,m =
[
x(l)t,m,y

(l)
t,m,d

(l),
t,m ,e

(l)
t,m

]
∈ R4, i.e.,

the global coordinates, distance (unit:m) from the actor, and
a binary variable e(l)t,m ∈ {1,0} indicating whether the road
segment is part of an intersection (e(l)t,m = 1) or not. We let



V(l)
t ∈ RR×4 be the lane node features of all the R nearby

lane segments at the timestamp t. Similar to E(c)
t and E(p)

t ,
we form the adjacency matrix for the nodes of the actor and
the lane, i.e., E(l)

t ∈ R(R+1)×(R+1).
Given the above-mentioned sub-graphs, we denote an HIG

at a timestamp t as Gt =
{

G(c)
t ,G(p)

t ,G(l)
t

}
.

B. Concepts and Problem Formulation
• State: In our IL setting with the infinite horizon, we

formulate the state St of the actor (i.e., the focal vehicle
as the agent) based on the historical HIGs for the past L
timestamps, i.e., St = {Gt−L,Gt−L+1, . . . ,Gt}. Furthermore,
without loss of generality, we account for the focal vehicle
as the actor, while the formulation is general enough to be
extended to the multi-agent setting [3], [16].

• Actions and Policy: Given an observed state St , we aim
to determine the decision process as well as the respective
actions At of the actor that represents the focal vehicle. The
IL designs of HGIL will identify the policy π(·), a function
that maps the state St to its corresponding action At , i.e.,
At ∼ π(A|St). In this prototype study, HGIL rolls out and
generates a series of planned displacements towards the x and
y axes, At =

[(
∆x(f)

(t+1),∆y(f)
(t+1)

)
, . . . ,

(
∆x(f)

(t+L),∆y(f)
(t+L)

)]
∈

RL×2, for the future L timestamps.
• Problem Definition: Give the above-mentioned states

and actions from the human driver demonstration data,
we formulate the generative adversarial imitation learning
(GAIL) within HGIL to recover the focal vehicle’s policy
π that can be used to imitate the behaviors of the human
drivers by generating At , given its observed state St .

Given the observed state S (say, the historical HIGs),
the GAIL in HGIL optimizes the actor’s policy π , such
that the resulting actions A of the actor – that is, series
of planned displacements – are indistinguishable from the
expert demonstrations (i.e., human driver demonstration).
This can be formalized as finding a Nash equilibrium [15]
within a minimax game between a policy generator network
approximating π , and a discriminator network ψ , i.e.,
min

π
max

ψ
ES,A∼π [log(ψ(S,A))]+ES,A∼πe [log(1−ψ(S,A))],

(3)
where ψ represents the policy discriminator network function
of the GAIL and πe denotes the policy of the expert (i.e.,
human drivers). To further expand the interaction awareness
and hierarchical explainability, we design the state embed-
dings with HIGs for S (detailed in Sec. IV).

IV. MODEL CORE DESIGNS

A. Overview of State Embedding Processing
We overview the state embedding processing of HGIL in

Fig. 2. Specifically, HGIL first creates the HIGs to represent
the actor’s state in the traffic environment at each timestamp.
Then, the local sub-graph attention (I) in HGIL updates the
node features of each sub-graph by accounting for the local
interactions and relations of the objects involved. Next, HGIL
fuses the resulting node features from the HIGs, and further
leverages the global cross-graph attention (II) to quantify
the actor’s interactions in a global context, and generates the
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Fig. 2: Architecture overview of state embeddings within
HGIL, which consists of (I) local sub-graph attention and
(II) global cross-graph attention.

state embeddings for policy learning (detailed in Sec. IV-C).
B. State Embeddings with HIGs

(I) Local Sub-graph Attention: We note that a human
driver may respond to traffic participants and environments
with different strategies. In order to capture the interactions
between the actor with different objects and the resulting
AXI scenes, we design the local sub-graph attention for our
IL settings, which helps identify the important sub-graphs
within our HIG that indicate the decision-making process of
the actor.

(a) Node Feature Embeddings: Given the set of the node
features of the actor and all the sub-graphs for the t-th
timestamp, Vt =

{
V( f )

t ,V(c)
t ,V(p)

t ,V(l)
t

}
, we first process

each node feature in Vt with an independent fully-connected
(FC) layer with B1 hidden units and the LeakyReLU
activation function, to convert them to the B1-dimensional
feature space. This way, we obtain the set of the node em-
beddings Vt =

{
V(f)

t ,V(c)
t ,V(p)

t ,V(l)
t

}
, where V(f)

t ∈ R1×B1 ,

V(c)
t ∈ RK×B1 , V(p)

t ∈ RP×B1 , V(l)
t ∈ RR×B1 .

Afterwards, we concatenate the actor node feature V(f)
t

with each of the sub-graph node feature embeddings, and
obtain the node features of the sub-graphs.

(b) Graph Convolution: We then process each concate-
nated features with a separate graph convolutional (GCN)
layer (with B2 hidden units) to account for the local in-
teraction within each of the sub-graphs, resulting in the
updated node features Q(c)

t ∈ R(K+1)×B2 , Q(p)
t ∈ R(P+1)×B2 ,

and Q(l)
t ∈ R(R+1)×B2 .

For instance, to find Q(c)
t , we concatenate the peer vehi-

cles’ node features, V(c)
t , with the actor node features, V(f)

t ,
i.e., V̊(c)

t =
[
V(c)

t
∣∣∣∣V(f)

t

]
, which is further fed to the GCN

layer, i.e.,

Q(c)
t =

(
D̂(c)

)− 1
2 ·

(
E(c)

t + I
)
·
(

D̂(c)
)− 1

2 · V̊(c)
t ·W(c)+b(c),

(4)
where D̂(c) ∈ R(K+1)×(K+1) represents the diagonal degree
matrix, i.e., D̂(c)[i, i] = ∑ j E(c)

t [i, j]. (E(c)
t + I) adds the self-

loops to the graph. W(c) ∈ RB2×B2 and b(c) ∈ RB2 represent
the set of the trainable weights. We similarly find Q(p)

t ∈
R(P+1)×B2 and Q(l)

t ∈ R(R+1)×B2 with two separate GCN



layers.
(c) Attention Scoring for Sub-graphs: We then quantify

the importance of different sub-graphs based on the graph
embeddings. Specifically, as illustrated in Fig. 3, we first
concatenate the actor node’s features within the resulting
graph embeddings from the three GCN operations into a
vector Q(f)

t , i.e.,
Q(f)

t =
[
Q(c)

t [−1, :]
∣∣∣∣Q(p)

t [−1, :]
∣∣∣∣Q(l)

t [−1, :]
]
, (5)

where Q(c)
t [−1, :], Q(p)

t [−1, :], and Q(l)
t [−1, :] all correspond

to the embedded features of the actor node (i.e., the last row)
w.r.t. actor-to-vehicle, actor-to-pedestrian, and actor-to-lane
sub-graphs.

………
…

…

…

Aggregating Actor’s Local information

Concat FC Softmax

Fig. 3: Illustration of the attention scoring for sub-graphs.

In other words, the vector Q(f)
t ∈ R1×B′

2 (B′
2 = 3B2) ag-

gregates the local context of different objects near the actor,
and can be further leveraged to determine and differentiate
the relative importance of the sub-graphs in the AXIs.

We then feed Q(f)
t to two FC layers with the B3 hid-

den units to generate the sub-graph attention scores αt =[
α
(c)
t ,α

(p)
t ,α (l)

t

]
= ρ(FC(σ(FC(Q(f)

t ))) ∈ R3, where σ(·)
represents the LeakyReLU activation function and ρ(·) is
the Softmax function. Each of the three elements in αt
represents the level of interaction between the actor and each
of the sub-graphs.

(II) Global Cross-graph Attention: To capture the human
driver decisions in a joint response to different involved
objects (for instance, other traffic participants and map
topology) in the global context of the traffic environments,
we have further designed the global cross-graph attention to
capture the global interplay in the AXIs.

Recall that Q(c)
t [−1, :], Q(p)

t [−1, :], and Q(l)
t [−1, :] refer to

the embedded features of the actor node (i.e., the last row)
w.r.t. the three sub-graphs. We further update the actor node
features from Eq. (5) by multiplying the sub-graph attention
scores with the corresponding actor node features (i.e., the
last row) in the sub-graphs, i.e.,

Q(f)
t =

(
α
(c)
t ·Q(c)

t [−1, :]
)
⊕
(

α
(p)
t ·Q(p)

t [−1, :]
)

⊕
(

α
(l)
t ·Q(l)

t [−1, :]
)
,

where ⊕ denotes the element-wise addition operation.
To find the global cross-graph attention, for each times-

tamp t, we fuse all the sub-graph nodes and their edges into
a global interaction graph, denoted as Gt , that consists of
T = 1+K +P+R nodes in total. We form the global node
feature embeddings of Gt by concatenating the updated actor
node feature Q(f)

t with those of all other nodes, i.e.,

Qt =
[
Q(f)

t
∣∣∣∣Q(c)

t [1 : K, :]
∣∣∣∣Q(p)

t [1 : P, :]
∣∣∣∣Q(l)

t [1 : R, :]
]
, (6)

where Qt ∈ RT×B2 .

Afterwards, we model the levels of interactions at the
timestamp t, denoted as Γt ∈ RT×T , across all the nodes in
the global interaction graph Gt , where the level of interaction
between each pair of nodes is quantified by

Γt [i, j] =
exp(µt [i, j])

∑
T
o=1 exp(µt [i,o])

, (7)

and µt [i, j] is given by
µt [i, j]≜ (Wv)

⊤ ·σ
(
(Qt [i, :] ·Wg)

∣∣∣∣(Qt [ j, :] ·Wg)
)
.

Here, σ(·) represents the LeakyReLU activation function,
and Wv ∈ RB′

3 (B′
3 = 2B2) and Wg ∈ RB3×B3 represent the

trainable parameter matrices.
Then, we further generate the weighted node embeddings

Ft ∈ RT×B3 based on the following linear operation,
Ft = Γt ·Wg +bg, (8)

where Wg ∈ RT×B3 and bg ∈ RB3 are trainable parameters.
Recall that each observed state is given by a series of

HIGs, i.e., St = {Gt−L,Gt−L+1, . . . ,Gt}. For the timestamps
from (t − L) to t, HGIL finds the node embeddings of
the global interaction graphs Gt−L to Gt , i.e., Ft−L to
Ft . We feed the corresponding actor node feature embed-
dings (i.e., the last row of each Ft ) from the L historical
timestamps to the long short-term memory (LSTM) with
the LealyReLU activation function. Then, we obtain the
sequence embeddings of the global interaction graphs, i.e.,
H′

t = LSTM
(
[F(t−L)[−1, :], . . . ,Ft [−1, :]]

)
. The sequence em-

beddings from the global interaction graphs are further added
with the temporal feature embeddings of the actor node
features generated by another LSTM module, i.e.,

Ht = H′
t ⊕LSTM

(
[V(f)

t−L, . . . ,V
(f)
t ]

)
, (9)

which forms the final state embeddings Ht ∈ RB4 for the
training of HGIL (detailed in Sec. IV-C).
C. Training Designs of HGIL

Policy Generator Network

LeakyReLUFC LeakyReLUFC
FC

FC

State 
Embedding

Softmax

Policy Discriminator Network

Concat FC Tanh FC Tanh FC

Probability

Sigmoid
State 

Embedding
Action

Expert Action

State 
Embedding

Generated Actions

Action 
Confidence 

Scores

Policy 
Generator Policy 

Discriminator

Probability

(i)

(ii)

(iii)

Fig. 4: Illustration of (i) policy training; (ii) policy generator
network; and (iii) policy discriminator network.

• Policy Generator and Discriminator Networks:
Fig. 4(i) illustrates the model training process given the
state embeddings Ht . Based on the state embeddings, HGIL
provides a policy generator network consisted of FC layers
to approximate and generate the policy π that resembles
the decision-making process of the human drivers. In the
meantime, HGIL provides the policy discriminator network
ψ to distinguish the actions performed (i.e., trajectories)
by the policy generator network against the human driver
demonstration data (i.e., expert action from the demonstra-



tion). We further show the structures of the two networks in
Figs. 4(ii) and (iii).

(a) The policy generator network takes in the state em-
beddings of the actor Ht , and returns the set of Z possible
sequences of displacement actions, {Ât,i} (i ∈ {1, . . . ,Z}),
through the fully-connected (FC) network. Here we take
into account multiple sequences of displacement actions to
accommodate the decision uncertainty of motion planning in
the autonomous driving simulation. To this end, the policy
generator network further outputs the confidence scores Ĉt ∈
RZ (in terms of probability) for each of {Ât,i}.

(b) The policy discriminator network ψ aims to discrimi-
nate the actions generated from the policy generator as well
as the human driver demonstration (expert). ψ takes in (i) the
policy generator’s output actions (say, Ât,∗ that corresponds
to the maximum confidence score in Ĉt ); or (ii) the actual
actions Ae

t performed in the human driver demonstration
data. Thus, given the concatenation of input actions (At,∗
or Ae

t ) as well as state embeddings Ht , ψ estimates the
probability (i.e., ψ

([
Ht

∣∣∣∣Ae
t
])

or ψ
([

Ht ||Ât
])

) that the input
action resembles the human driver demonstration.

• Model Training Loss: In order to capture the discrep-
ancy between the generated actions and the human driver
demonstration, we take into account the following types of
loss within HGIL, i.e., (a) displacement regression loss ℓr
and (b) confidence cross-entropy loss ℓc, and further integrate
them in the training loss of HGIL, i.e., (i) policy generator
network loss Lg and (ii) discriminator network loss Ld .

(a) Displacement Regression Loss ℓr: The displacement
regression loss ℓr is given by the mean squared error (MSE)
between the generated sequence of actions (i.e., a series of
planned displacements) with the highest score (probability)
in Ĉt , Ât,∗, and the actual action in the human driver
demonstration.

(b) Confidence Cross-Entropy Loss ℓc: We define a one-
hot encoding vector as a label for the confidence scores,
Bt ∈ RZ , to indicate the set of actions among all generated
ones that is the closest to the human driver demonstration.
For instance, we denote Bt = [0,1,0, . . . ,0], if the second set
of the generated actions has the least Euclidean distance from
At in the human driver demonstration. Based on the above,
we find the cross-entropy loss ℓc between the generated
actions and the human driver demonstrations, i.e.,

ℓc ≜−
Z

∑
i=1

(
Bt [i] · log

(
Ĉt [i]

))
. (10)

Based on the above designs, we further have the loss in
the policy generator and discriminator networks as follows.

(i) Policy Generator Loss Lg: In order to train the policy
generator network, we integrate the regression loss ℓr and
confidence loss ℓs to account for the discrepancy between
the actions performed by the actor and the human driver
demonstration. In the meantime, based on the formulation
in Eq. (3), HGIL maximizes the probability ψ

([
Ht ||Ât

])
(i.e., minimize 1−ψ

([
Ht ||Ât

])
) such that the discriminator

network cannot discriminate the actions generated by the
generator network from those of the human driver demon-

stration. To summarize, the policy generator minimizes
Lg ≜ βr · ℓr +βc · ℓc +βd · log

(
1−ψ

([
Ht ||Ât

]))
, (11)

where βr, βc, and βd represent the corresponding weights,
respectively.

(ii) Policy Discriminator Loss Ld : Based on the formu-
lation in Eq. (3), the policy discriminator network further
performs the opposite optimization against the generator, by
maximizing

Ld ≜ log
(
ψ
([

Ht
∣∣∣∣Ae

t
]))

+ log
(
1−ψ

([
Ht ||Ât

]))
. (12)

Since there is a minimax game between the policy generator
and discriminator networks [15], we train them iteratively
based on Eqs. (11) and (12) until convergence.

V. DATA-DRIVEN MODEL EMULATION STUDIES

A. Baseline Approaches & Simulation Settings
• Baseline Approaches: For AD simulation, we compare

performance of HGIL with DualDisc [10], CGAIL [11],
SocialGAN [12], LaneGCN-GAIL [6], MGAIL [1], and
SeqST-GAN [17].

• Dataset Studied & Performance Metrics: We leverage
the large-scale human driver demonstration dataset Argov-
erse v2 [9] to perform our experimental studies. Specifically,
we select 35,000 driving scenes for IL training and 5,000
scenes for evaluation. We evaluate the effectiveness of HGIL
and other baselines based on final displacement error – that
is, distance of the final generated position from the true
one in the demonstration (denoted as FDE) – and average
displacement error – that is, average distance of all locations
in the generated and actual actions (denoted as ADE). We
also find the minimum final displacement error (minFDE)
and the minimum average displacement error (minADE) that
concern the errors of the actions with the lowest FDE/ADE.
We also find the miss rate (MR) regarding the percentage of
all scenes when minFDE is over 2m.

• Model Parameter Settings: Since the Argoverse v2
dataset is collected with a 10Hz frequency and therefore we
set L= 30 to leverage 3s of historical information to generate
next 3s of actions. Similar to the prior studies [6], [18], we set
Z = 6, i.e., 6 sets of candidate actions given an observed state
St , and estimate their uncertainty based on the confidence
score Ĉt ∈R6. For the local sub-graph and global interaction
attention components, we use an FC layer with B1 = 64 units
to convert the node features. Furthermore, we set the number
of the hidden units of all the subsequent graph layers to
B2 = B3 = 64. We set the number of the hidden units for the
LSTM modules to B4 = 32 to generate the state embeddings.
Besides, we leverage B5 = B6 = 2 FC layers in each of the
policy generator and discriminator networks (Figs. 4(i) and
(ii), and each FC layer is with 32 hidden units. We set βs =
βd = 1 and βc = 0.3 in Eq. (11).
• Simulation Environment & Model Training Setup:

We implemented our networks based on Pytorch 1.13.1 and
Python 3.8.16. We performed our experiments on an HPC
server equipped with Linux Ubuntu 18.04.5 LTS, an AMD
Ryzen Threadripper 3960X 24-Core CPU, 4×GeForce RTX
3090 with GDDR5 24GB, and 128GB RAM. With the above
settings, the training time of our HGIL is on average 361.3ms



per AXI scene (each driving scene lasts for 6s on average).
The training setting of HGIL is as follows. We first pre-

train the policy generator network with a learning rate decay
(from 0.01 to 0.001) for 300 iterations (Adam optimizer is
adopted). We then train the policy generator and discrimina-
tor networks according to Eqs. (11) and (12) with a learning
rate of 0.001 for 200 iterations. At each iteration we sample
1,000 driving scenes to train the networks.
B. Performance Results and Visualization Studies

• Overall Performance: We present the overall perfor-
mance of HGIL in Table I, and compare HGIL with other
IL-based methods. We can observe that HGIL outperforms
the other baselines in learning the human driving behav-
iors in the AXIs. In particular, our HGIL achieves 15.4%,
20.3%, 22.7%, 27.7%, and 7.3% lower in terms of FDE,
ADE, minFDE, minADE, and MR. Via the local sub-graph
attention and the global cross-graph attention, HGIL yields
better performance in learning the human drivers.
TABLE I Overall performance results & ablation studies.

Model FDE ADE minFDE minADE MR
HGIL 2.88 1.19 2.43 1.02 23%
DualDisc 3.77 1.83 3.95 1.92 41%
CGAIL 3.11 1.33 2.71 1.15 28%
SocialGAN 3.07 1.29 2.71 1.18 30%
LaneGCN-GAIL 3.01 1.26 2.60 1.10 27%
MGAIL 3.45 1.42 2.91 1.22 27%
SeqST-GAN 3.54 1.46 3.01 1.25 29%
HGIL w/o HIG 3.05 1.32 2.73 1.20 29%
HGIL w/o Local 3.22 1.39 2.82 1.24 30%
HGIL w/o Global 3.83 1.74 3.29 1.52 39%
HGIL w/o Confidence loss 3.05 1.23 2.55 1.17 25%

• Model Ablation Studies: We show the model ablation
studies on HGIL to evaluate the importance of different
designs in Table I. Specifically, we compare the performance
of complete HGIL designs with the following variations: w/o
HIG, w/o the local sub-graph attention, and w/o the global
cross-graph attention. We can observe the overall higher
importance of the local sub-graph attention and global cross-
graph attention in learning and capturing the human driving
behaviors.

• Hierarchical Visualization: We illustrate the explained
interactions by local sub-graph and global cross-graph at-
tentions in Fig. 5. We show in Figs. 5(a)–(c) the local sub-
graph attention where different types of objects (black arrows
represent the moving directions of the focal vehicle and
the pedestrians) in three sub-graphs are linked with edges
of colors representing their weights. We can see from the
highlighted sub-graphs that the behaviors of the actor were
mainly resulting from the local contexts at the lane segments
near the intersection. Fig. 5(d) further visualizes the global
cross-graph attention where the actor is actively interacting
with the global contexts where an incoming pedestrian was
walking towards the crosswalk of the intersection.

VI. CONCLUSION

We propose HGIL, a heterogeneous graph-based imitation
learning approach for AD simulation. We have designed a
heterogeneous interaction graph (HIG) representation to pro-
vide local and global representation and awareness of AXIs.
HGIL leveraged the HIGs to generate the state embeddings,

0.0

0.2

0.3

0.1

0.4

0.5

0.6

Nearby Lane Segments 
Peer Vehicles Actor’s Current Position

Actor’s Intial Position
Actor’s Trajectory

Nearby Pedestrians 

(a) (b)

(d)(c)

Fig. 5: (a)–(c) Local attention (actor-to-vehicle, actor-to-
pedestrian, & actor-to-lane) and (d) global attention in AXIs.

and a hierarchically-explainable GAIL approach captures the
interactions and driving decision-making processes of the fo-
cal vehicle. Extensive data-driven simulation and explanation
studies have demonstrated the accuracy and explainability of
HGIL in learning and capturing the complex AXIs.
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