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Abstract—All major web browsers support extensions to
provide additional functionalities and enhance users’ browsing
experience while the extensions can access and collect users’ data
during their web browsing. Although the web extensions inform
users of their data practices via multiple forms of notices, prior
work has overlooked the critical gap between the actual data
practices and the published privacy notices of browser extensions.
To fill this gap, we propose ExtPrivA that automatically detects
the inconsistencies between browser extensions’ data collection
and their privacy disclosures. From the privacy policies and
Dashboard disclosures, ExtPrivA extracts privacy statements
to have a clear interpretation of the privacy practices of an
extension. It emulates user interactions to trigger the extension’s
functionalities and analyzes the initiators of network requests to
accurately extract the users’ data transferred by the extension
from the browser to external servers. Our end-to-end evaluation
has shown ExtPrivA to detect inconsistencies between the
privacy disclosures and data-collection behavior with an 85%
precision. In a large-scale study of 47.2k extensions on the
Chrome Web Store, we found 820 extensions with 1,290 flows
that are inconsistent with their privacy statements. Even worse,
we have found 525 pairs of contradictory privacy statements in
the Dashboard disclosures and privacy policies of 360 extensions.
These discrepancies between the privacy disclosures and the
actual data-collection behavior are deemed as serious violations
of the Store’s policies. Our findings highlight the critical issues
in the privacy disclosures of browser extensions that potentially
mislead, and even pose high privacy risks to, end-users.

I. INTRODUCTION

While web browser extensions have been widely used to
extend the functionality, and enrich user experience, of web
browsers, they pose significant privacy risks to the users.
Billions of web browser users can easily install free exten-
sions via extension stores. Due to their integration with web
browsers, the extensions can collect highly sensitive data, such
as personally identifiable information (PII) and any content
that the users input to a web page [53]. These types of data can
then be collected by the extensions themselves or transferred
to unwanted/unknown/unauthorized third parties [19].

Major extension stores have strict requirements on exten-
sions’ privacy practices to reduce privacy risks for users [33,
35, 50]. For example, the Chrome Web Store requires exten-
sions to provide privacy-practice disclosures via the developer
Dashboard along with the privacy policies [36]. Privacy
policies are free-form documents while Dashboard disclosures
are based on a common template that is shared among all
extensions on the Store. Fig. 1 shows an example of Dashboard
privacy-practice disclosures.

Discrepancies between the different forms of privacy disclo-
sures and extensions’ behavior are a serious violation of the

Fig. 1: Dashboard privacy disclosures of a Chrome extension.

Store’s developer program policies [37]: "Any discrepancies
between the developer dashboard disclosures, your privacy
policy, and the behavior of your item would be a violation
of the Chrome Web Store’s developer program policies. This
can result in the suspension of all the items owned by the
publisher, deactivation of the existing user-base, and ban of
the entire publisher entity (including related accounts)."

Because of the "non-discrepancy" requirements, data col-
lection for potentially benign purposes may still violate an
extension’s privacy policy if the collected data is not disclosed
in the policy. For example, if an extension claims not to collect
or use user data, then it would violate the privacy disclosures
even when the extension collects the users’ location and
keystrokes only for debugging and product-analytics purposes.

Prior work has largely overlooked the inconsistencies be-
tween the extensions’ execution behavior and privacy policies.
Due to their lack/inability of determining the legitimacy of
data transfer, prior policy-agnostic detection techniques [16,
43, 60] can only analyze common malicious user-data leakage.
For example, they can only detect obvious malicious behavior
(such as uninstalling other extensions [43]) or check whether
the privacy leakage is either accidental or intentional [60].

The main question we aim to answer is: Can we automat-
ically detect the inconsistencies of the actual data collection
of a browser extension with its stated privacy practices? We
propose, ExtPrivA, an end-to-end system that extracts the
stated privacy practices and performs a fine-grained analysis



of data flows to detect any inconsistencies between the actual
data practices and the privacy disclosures of web browser
extensions. Similar to software testing based on dynamic
analysis [31, 32, 57], we aim to minimize false positives for
(maximally) correct detection of inconsistencies. Specifically,
ExtPrivA addresses the following 3 technical challenges:

a) TC1 – Detect contradictions of statements in heteroge-
neous privacy disclosures: Checking inconsistencies between
privacy policies and actual data collection requires unam-
biguous interpretations of privacy disclosures, i.e., detecting
any contradictions between the privacy statements. Different
privacy-disclosure forms pose a significant challenge due to
the differences in their definitions of data types (i.e., ontolo-
gies). We derived a formal representation of privacy statements
from free-form privacy policies and template-based Dashboard
disclosures. Finally, based on the extension Store’s data-type
specifications, we derived a unified ontology to leverage a
state-of-the-art privacy analysis [13] to detect the contradic-
tions between privacy policies and Dashboard disclosures.

b) TC2 – Extract actual data collection from extensions’
behavior: Since extensions do not automatically execute their
functionality while their data traffic only contains low-level
key–values, ExtPrivA triggered an extension’s functionality
and inferred data types from its data traffic to extract its
actual data-collection practices. ExtPrivA emulated user
interactions on both real-world web pages and a honeypage
to elicit the extensions’ behavior that generated data traffic
from the extensions to external servers. We developed a
request-initiator analysis to isolate the data traffic initiated
by extensions. Finally, ExtPrivA extracted data types from
key–value pairs in HTTP(S) requests and URL query strings.

c) TC3 – Detect flow-to-policy inconsistencies: The dif-
ferences between the semantic granularities of data flows and
privacy statements (i.e., low and high level) make it challeng-
ing to analyze their relationship and check the (in)consistency.
From the extension Store’s developer policies, we extracted a
data-object ontology used in the privacy-practice disclosures
to analyze the relationship between data types in the flows
and privacy statements. Finally, we established the consistency
conditions between the data flows and the privacy statements
represented in a formal model to detect their inconsistencies.

We evaluated the accuracy of ExtPrivA in extracting
privacy statements or data flows, and end-to-end detection
performance via the manual verification of two annotators. Our
result shows a precision of higher than 90% in intermediate
extractions and an end-to-end detection precision of 85%.

We analyzed the (in)consistencies of the privacy disclosures
and data-collection behavior of 47,207 extensions that provide
Dashboard disclosures on the Chrome Web Store. ExtPrivA
identified 525 contradictions in the Dashboard disclosures and
privacy policies of 360 extensions which made their privacy
disclosures ambiguous. Finally, it found 820 extensions with
84.6M users experiencing 1,290 data flows that are inconsis-
tent with their Dashboard disclosures.
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Fig. 2: ExtPrivA analysis pipeline.

This paper makes the following main contributions.
• A novel fine-grained analysis that detects the inconsistencies

between the privacy disclosures and the actual data practices
of web browser extensions. The analysis also identifies
ambiguities in the privacy disclosures by detecting the
contradictory privacy statements between free-form privacy
policies and template-based Dashboard disclosures.

• An end-to-end automated framework, called ExtPrivA,
that analyzes flow-to-policy (in)consistencies of browser
extensions. It extracts privacy statements from the disclosed
privacy practices (Section III), performs dynamic analysis to
extract data traffic (Section IV), and extracts data flows from
the transferred key-values (Section V). Finally, the system
detects contradictory privacy statements and inconsistencies
between the data flows and the privacy statements by using a
formal model (Section VI). Our evaluation demonstrates that
ExtPrivA detects contradictory statements with a 91.7%
precision, and detects flow-to-policy inconsistencies with an
85% precision. Fig. 2 shows the analysis pipeline.

• A large-scale study of 47.2k extensions in the Chrome
Web Store (Section VII). Despite the Store’s strict vetting
process, we still found a large number of extensions that had
contradictory statements and flow-to-policy inconsistencies
in their privacy disclosures and data-collection behavior,
posing high privacy risks to millions of users. This finding
highlights the critical issues of privacy-practice disclosures
of browser extensions in practice.

II. BACKGROUND

A. Extension-Platform Privacy Requirements

In addition to privacy policies, major extension stores re-
quire extensions to provide easy-to-read disclosures of their
privacy practices to users. In particular, Google has required
developers to declare the types of data their extensions col-
lected via the developer dashboard since January 2021 [36].
Developers must also certify that they follow the Limited Use
policy under which the transfer of user data to ad platforms, or
for personalized advertising, is prohibited [35]. The Dashboard
disclosure form is shown in Fig. 7 (Appendix C). In this
paper, we use the term privacy policy to distinguish the free-
form policy documents from the template-based Dashboard
privacy-practice disclosures of the Chrome Web Store.
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B. Extension Architecture

a) Web Browser Selection: We select Chrome as the
representative extension architecture for further examination
because of its widespread adoption. At the time of this
writing, Google Chrome is the most popular browser. It con-
stitutes 67% and Chromium-based browsers (Chrome, Edge,
and Opera) constitute 79% of the desktop browser market
share [61], a significantly larger share compared to other
browsers (e.g., Firefox and Safari have less than 10% each).
Furthermore, the Firefox and Safari browsers have adopted a
cross-browser extension API, called WebExtensions [44, 52].
Therefore, the design principles of our analysis pipeline should
apply to other non-Chrome browsers.

b) Main Components of Extensions: A Chrome browser
extension comprises four main executable components: back-
ground scripts (or background pages), content scripts, web-
accessible resources (WARs) and pop-up pages. A JSON
manifest file declares the components and how they are
executed with respect to a web page. Background scripts
(Manifest V2) and service workers (Manifest V3) have no UI
and are hidden from users. They have a lifetime independent of
other user-facing web pages and can access privileged Chrome
extension APIs. The scripts run asynchronously to handle
events generated by other components and can communicate
via message passing. Content scripts are injected into a web
page and can read/modify the DOM tree which is inaccessible
by the background pages [17]. The scripts can be configured
to execute at either the start or end of DOM-loading. On the
other hand, WAR resources’ JavaScript is loaded and runs in
the same context as the host pages. Pop-up pages execute upon
a user’s click on the extension icon to interact with users.

c) Extension Identification: An extension in a browser
is uniquely identified by an extension ID that can be used
to access the resources included in the extension’s package.
Resources of an extension, such as its content scripts, have
URLs prefixed with chrome-extension://<extension-id>. The
ID is generated randomly when the extension is loaded to the
browser but can be made to be a fixed value by specifying a
key value in the extension manifest [26].

d) Execution Entries: Since extensions are event-driven
applications that have multiple entry points to trigger their
functionality, the manifest file provides extensions with a
means to statically declare their static entry points [27]. An ex-
tension can specify the URL patterns where the content scripts
are executed when loading a web page from a pattern-matched
URL. It can also implement event handlers for extension
actions (i.e., mouse clicks on the extension icon on the browser
menu bar) and the activation of the extension’s context-menu
items. Finally, extensions specify the URL-match patterns on
which it has effect. These patterns are included in the host
permissions and web accessible resources to restrict the web
pages to which the extensions have access and the pages which
can access the resources (e.g., JavaScript and CSS) included
in the extension package, respectively.

e) Restriction of Network Access: To enhance the
browser’s security, only background scripts and pop-up pages
bypass the same cross-origin resource sharing (CORS) policy
and can send information to any servers without any restric-
tion. By contrast, content scripts are subject to the CORS
policy of the host web pages [23]. Unless the server side
allows CORS requests, content scripts cannot directly request
resources or send information to an arbitrary external server
other than the origin of the currently visiting URL.

III. ANALYSIS OF PRIVACY-PRACTICE DISCLOSURES

The privacy statements of an extension comprises the state-
ments from template-based Dashboard disclosures and free-
form privacy policies. In this section, we describe the analysis
and extraction of formal privacy statements from these two
forms of privacy disclosures.

A. Privacy Statement Definition

To simplify the analysis of privacy policies, we limit the
analysis to the statements about data collection, i.e., whether
a receiver r collects a data type d or not, as formally defined
next. Since privacy-practice disclosures specify a fixed policy
for data-usage purposes, called a Limited Use policy [37],
analysis on data-usage purposes can be done separately.

Definition III.1 (Privacy Statements). A privacy statement is
a tuple s = (r, c, d) where r is a receiver that collects or does
not collect (c ∈ {collect, not_collect}) a data type d.

B. Analysis of Dashboard Disclosures

We extract privacy statements from an extension’s Dash-
board privacy-practice disclosures as follows. Let D = {di}
be the set of data types that the extension declares to collect
and T be the set of all possible data types that an exten-
sion can declare. We assume that if an extension does not
declare its collection of a data type di ∈ T , then it will
not collect di. The set of data types U not collected by the
extension is then derived by excluding the stated data types
from T : U = T \ D = {d′i|d′i ∈ T ∧ d′i /∈ D}. From
D and U , the following privacy statements will be created:
S = {(r, collect, di)|di ∈ D}∪{(r, not_collect, d′i)|d′i ∈ U)}.
For example, given the Dashboard disclosures in Fig. 1,
where the extension states the collection of only 4 data
types: PII, Location, User Activity, and Website Content,
we have D = {PII, location, user_activity, site_content}
and the corresponding privacy statements are S = Sc ∪ Sn

where Sc = {(extension, collect, di)|di ∈ D} and Sn =
{(extension, not_collect, d′i)|d′i ∈ T \D}.

At the time of writing this paper, the Chrome Web Store
specifies a total of 9 data types that an extension can de-
clare [36]. Therefore, ExtPrivA extracts a total of |T | = 9
privacy statements for each extension which comprise |D|
positive-sentiment statements (i.e., with a collect action) for
the declared data types D and 9 − |D| negative-sentiment
statements (i.e., with a not_collect action) for the undeclared
data types in the extension’s Dashboard disclosures. Since the
privacy-practice disclosures follow fixed declaration templates,
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D is extracted from the disclosures using regular expressions.
All data-type examples in the Chrome Web Store policies are
listed in Table X and Fig. 7 (Appendix C).

C. Analysis of Free-form Privacy Policies
a) Privacy Statement Extraction: Given the privacy policy

of an extension, ExtPrivA adopts PurPliance [13], a state-
of-the-art privacy-policy analysis technique, to extract privacy
statements from the sentences in the document. For each
sentence, the parameters of privacy statements (data type,
collection action and receiver) are determined by an NLP
pipeline. The system first identifies the sharing-collection-and-
use verbs in the sentence and then uses the semantic role
labeling to extract the semantic arguments (e.g., subjects and
objects) of each verb. The data types are extracted from the
verbs’ objects by a named entity recognition (NER) model.

Since the NLP pipeline was originally designed for Android
apps, ExtPrivA addresses the following challenges to han-
dle the differences between the privacy policies of Chrome
extensions and Android apps.

b) Extension-Scope of Privacy Statements: While Android
apps typically have dedicated privacy policies, many browser
extensions are found to use generic privacy policies that cover
the data practices shared by the web services developed by the
same developer. Most privacy policies include statements for
multiple platforms (such as websites, apps, and extensions).
For example, "Capital One Shopping systems capture email-
header data (sender, recipient, date and subject, not message
bodies)" [55] applies only when users grant inbox access.
However, the current sentence-based privacy-policy analysis
techniques [7, 13] cannot distinguish the scope of each state-
ment (i.e., whether the statement is about the website or the
extension) owing to the lack of a holistic whole-document
analysis. Therefore, we exclude statements that do not mention
extensions to reduce false positives. In particular, we include
only the sentences that contain the keyword "extension".

c) Extension Data Ontologies: Since the data-type ontolo-
gies modeling data types and their relationship of Android
apps are different from the relationships of browser extensions,
we augment them with the high- and low-level data types of
the Web Store (Table X). Similar to the domain adaptation [46]
in NLP, this addition is necessary because privacy policies of
Android apps do not include certain extension-specific data
types, such as Website Content and Web History.

D. Implementation Details
We extracted privacy statements from template-based Dash-

board disclosures by parsing the Privacy-Practice page of each
extension while we leveraged the open source PurPliance [13]
to extract privacy statements from the privacy policies. For
each extension, ExtPrivA parsed the overview page to
obtain the URL of the privacy policy. The system then
pre-processed and extracted the sentences from the policy
using both rule-based methods and neural NLP models. The
crawling and pre-processing of extensions’ privacy policies are
described in Appendix B.

IV. ANALYSIS OF EXTENSION EXECUTION

ExtPrivA analyzes the data collection of an extension in
three main steps: 1) exercise the extension functionality, 2)
extract the network traffic initiated by the extension, and 3)
extract the data flows that comprise the receivers & data types
from the raw data traffic. We describe the first two steps in the
rest of this section while presenting the last step in Section V.

A. Triggering Extension Functionality

1) Candidate URL Extraction: Since extensions do not
have access to all websites by default, ExtPrivA first identi-
fies the URLs of the websites that an extension has access to.
To generate these URLs, ExtPrivA analyzes the extension
manifest and extracts the URLs patterns for the background
scripts, content scripts and WAR resources declared in the
host_permissions and matches keys in the manifest.
ExtPrivA generates a set of candidate URLs from each

URL pattern. A pattern is first decomposed into 4 com-
ponents, following the manifest format [25]: scheme, sub-
domain, domain, and path. ExtPrivA then synthesizes
the candidate URLs that match the specified URL pat-
terns by substituting wildcard components with common
valid values such as www for a subdomain. For exam-
ple, from https://*.example.com/subpath/*, a candidate URL
https://www.example.com/subpath/ is generated. Inspired by
Hulk [43], for those patterns that match unspecified domains
and paths such as <all_urls> and https://*/*, ExtPrivA
selects top website domains in two categories, search and
shopping, on which extensions commonly execute from the
Tranco list [45]. These URLs are listed in Table VIII.

2) Test pages: To test the extensions, we use two types of
web pages: real pages and a honeypage. The former is real-
world web pages that are served either from the Internet and
a web-page replay server. In contrast, the latter is a specially-
crafted web page that is based on prior extension analysis
work [64] and contains various HTML elements to trigger
common functionality of extensions. The HTML elements
include text and password input elements which use privacy-
sensitive keywords (e.g., username, name, and city) for their
HTML attributes (e.g., id, name, and class). Real pages are
useful for extensions that execute based on the structure of
websites where the honeypage cannot be replicated. For
example, the honeypage cannot emulate real complex websites
like Amazon shopping pages.

3) User Interaction Emulation: To trigger the data-
collection functionality of extensions that operate upon user
activities, we design interaction templates based on browser,
mouse and keyboard actions. These actions are the main user-
interaction categories expected by extensions to execute their
functionality [58]. We re-implemented the interaction tem-
plates [58] and further customized them for specific websites.
For example, a different element selector is used depending
on whether the browser is accessing a Google search result
page or an Amazon product page. ExtPrivA performs the
following templates after a web page is fully loaded:
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a) Text Selection and Mouse Actions: To elicit potential
data collection on the text selected on a web page, ExtPrivA
selects a word and activates the extension via the extension
icons on the menu bar and/or the context menu. For example,
a dictionary extension shows the definition of a selected word
after the user selects the word, clicks the right mouse button
and selects the extension icon on the context menu. Therefore,
ExtPrivA performs mouse scrolling and clicking to select
the text to trigger extensions that operate upon mouse events
(like clicks and double-clicks). When the web page is the
honeypage or a replayed page, the text of a fixed element is
selected. Otherwise, ExtPrivA selects the first word of the
<body> element that is expected to exist on any web page.

This interaction template already includes a click on the
extension icon on the browser menu bar. For example, a
shopping assistant shows the information of products on
amazon.com only when the user clicks on its menu-bar icon.
This interaction is called extension action (Manifest V3) or
browser action (Manifest V2) and is one of the main entry
points that trigger the functionality of extensions.

b) Keyboard Input and Form Submission: To trigger exten-
sion functionality that monitors keyboard events, ExtPrivA
inputs a keyword into a form field on the honeypage, issues a
copy command via ctrl+c and submits the input form to our
server endpoint. For example, spelling checkers may monitor
keyboard typing and suggest a correction. Inspired by the bait
technique [1], ExtPrivA inputs a special value, called bait,
to detect the extension’s collection of keyboard input.

c) Interaction with New Tab Pages: To trigger the exten-
sions that provide a customized new tab page, ExtPrivA
opens a new tab and types in a keyword. For example, the
Infinity New Tab extension opens a customizable tab that
lets users enter a search term and shows the current weather
forecast. This kind of extensions may collect user location
and/or search terms without the user’s awareness.

B. Data Traffic and Initiator Analysis

It is challenging to extract the data traffic originated from an
extension because the HTTP requests sent from the browser do
not differentiate between those sent by extensions and those
sent by web pages. Therefore, ExtPrivA extracts extensions’
data traffic by analyzing the request-initiator scripts and the
HTTP Origin header as follows.

First, ExtPrivA leverages the call-stack information of
script-initiated network requests provided by the network-
activity inspection of Chrome’s DevTools. In DevTools, an
initiator of a network request can be one of 6 types such
as a JavaScript script or HTML parser [20]. An extension’s
script, like other extension’s resources, has its URL in the form
of chrome-extension://<extension-id>/path-to-script (identify-
ing extension IDs is described in Section IV-D3). Since the
initiator information of a script contains call frames which
include the initiated scripts’ URLs in the call stacks, if a script
URL is prefixed by a chrome-extension scheme and matches
the extension ID, the traffic is initiated by the extension. While
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Fig. 3: ExtPrivA extension analysis testbed.

content scripts execute in web pages’ contexts, DevTools
captures the requests of content scripts. However, it indicates
chrome-extension:// initiators for content scripts but not for
injected inline scripts.

Second, ExtPrivA utilizes the Origin HTTP request
header which is non-programmatically modifiable to indi-
cate the security contexts that cause the browser to initi-
ate an HTTP request [51]. This header is set to chrome-
extensions://<extension-id> if the request is initiated by an
extension. External scripts in the background or pop-up pages
of the extension do not have URLs with the chrome-extension
scheme, and thus cannot be identified by using the call stacks
in the script initiators. Using the Origin header can identify
the requests initiated by such embedded external scripts.

C. Extraction of Key–Value Pairs

ExtPrivA parses HTTP requests in the extension traffic
intercepted in the prior step into key–value pairs since struc-
tured responses are widely used by web services [21]. The
key–value pairs are extracted from the sent cookies, URL
query strings and request bodies of HTTP POST messages.
In our dataset, while most of the traffic is plaintext, when
encountering encoded traffic, ExtPrivA attempts to decode
the data by using multiple rounds of Base64 decoding. This
decoding is based on the technique used by Starov et al. [60].
However, ExtPrivA cannot extract data flows from the data
traffic encrypted by extensions.

Unlike automatic data such as IP addresses as part of the
IP protocol or information in the HTTP security headers,
sending data via URL parameters or the POST body requires
a significant effort to obtain and set the values correctly. In
particular, obtaining and adding personal data to URL parame-
ters require developers’ time and effort, unlike the IP addresses
that browsers automatically set. Therefore, the occurrences of
these values in the transferred data are unlikely created by
the extension developers by accident. To further reduce false
positives of unintentional data leakage, we exclude key–value
pairs in HTTP headers (other than the Cookie header) because
the headers may include information automatically set by the
browser rather than intentionally set by the extension.

We filtered out key–value pairs sent to the servers that
had the same hostname as the currently visited web page
because the web page had already collected the user’s data. For
example, if a user visits host H=sub.example.com, we exclude
extensions’ traffic to H. It is unclear whether the extensions
are leaking data because the user already shared data with H.
However, this filtering of same-host traffic does not create false
positives and excludes only 0.81% (381/47,207) of extensions.
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D. Implementation Details
1) Analysis Pipeline: ExtPrivA performs dynamic analy-

sis and captures data traffic of the extensions using an analysis
pipeline as shown in Fig. 3. Each extension is initially loaded
to a clean browser instance that disables updates and other
unnecessary background traffic such as user-metrics reporting
to avoid noisy traffic, following the measurement procedure
of Chromium telemetry framework [29]. The browser then
records the traffic of the extensions and loads web pages
via a web page record-replay proxy. The browser employs
mechanisms to avoid bot detection that has been known to
affect the real behavior of websites [11, 42].
ExtPrivA utilizes the Playwright browser automation

tool [49] to drive an instance of the Chromium web browser.
Extensions are loaded to browser instances that display to
a virtual X11 frame buffer (Xvfb) as the browser does not
support loading extensions in the headless mode. The keyboard
keystrokes are sent to the browser instances via the X11 server
using the xdotool [56]. To trigger an extension action (i.e., a
click on the extension menu-bar icon), ExtPrivA instruments
the manifest to set the shortcut keys to perform the extension
actions because the browser automation tool can only interact
with web pages’ contents but not the interface of the browser.

To make the experiments reproducible, we employ a web
page replay (WPR) proxy, a modified version of the Chromium
WPR tool [22], to record, replay and passthrough network
requests and responses. The WPR proxy replays website con-
tents for reproducibility while allowing the browser extensions
to communicate with the Internet to capture the extensions’ re-
alistic behavior. Since the WPR proxy passes through dynamic
requests that had not been pre-recorded, it tests extensions
on dynamic contents while replaying static content to avoid
additional traffic to websites. In the record mode, the WPR
proxy records the responses of web pages by using the
browser with no installed extensions. In the replay mode, the
proxy passes through requests which are not found in the
WPR proxy’s recorded request store. In particular, the most
commonly visited web pages were recorded and replayed. We
set up the browser to whitelist the SSL certificates for the
WPR proxy to capture and replay encrypted HTTPS traffic.

2) Traffic Interception: To intercept the traffic generated
by the JavaScript’s XHR requests, ExtPrivA utilizes the
Chrome DevTools Protocol (CDP) [24] to extract the network
traffic from a web page to servers. ExtPrivA creates a
CDP session via Playwright to send commands and receive
events from the DevTools in the browser instance. Specifically,
ExtPrivA enables network tracking functionality of the
DevTools and extracts information from the network events.
The request tracing information contains a request initiator
which can be the DOM parser or a script. Since the browser
treats a background page as a regular web page, ExtPrivA
captures the network traffic of background pages of Chrome
extensions separately.

3) Determine Extension IDs: To accurately extract the
network traffic originating from an extension, ExtPrivA
determines the extension’s ID which is unique in the browser

instance. The system adds a key value to the manifest to
make the extension ID non-randomized [26]. ExtPrivA then
extracts the extension ID from the preference configuration
file in the browser’s user data directory and also verifies the
loaded extension path.

4) Testbed: To perform experiments in a large dataset of
extensions, we create a distributed experimental framework to
run the dynamic analysis on multiple machines. The testbed is
replicated and run in identical and isolated environments. The
framework is based on Docker Swarm [39] and the browser
is started with arguments to make it run in the resource-
constrained docker environments [48].

V. DATA FLOWS

A. Data Flow Definition

Given the data traffic of an extension collected in Sec-
tion IV, ExtPrivA extracts data flows that formally represent
the data-collection behavior of the extension. A data flow is
formalized in the following definition.

Definition V.1 (Data Flow). A data flow is a tuple f = (r, d)
where a receiver r receives a data object d.

B. Extraction of Data Flows

1) Extraction of Data Types: We select data types and
design a rule-based extractor as follows.

a) Data-Type Selection: Of the Store’s 9 data types, we
choose to extract 4 context-free data types whose meanings
do not depend on their usage contexts: Website Content, Web
History, Location and User Activity. It is challenging to extract
context-sensitive data types because the lack of the server-
side information makes it practically impossible to determine
the ultimate usage purposes of the collected data. Moreover,
these data types (e.g., PII and authentication information) are
included in Website Content. For example, if a user enters
a home address in a Google search box while extension E
records every input to the search box, it is not possible to
determine whether E intentionally collects home addresses
(PII) or only website content by solely analyzing data traffic.
ExtPrivA extracts 11 low-level data types under the high-

level data types as listed in Table I. Since the Store provides
only several examples rather than an exhaustive list of low-
level data types, we add the following examples for their pri-
vacy significance and relevance to our experiments. Page URL
is one of the "browsing-related data", a definition of the Store
for the Web History, and can be used to exactly determine
the page that a user visited. Similarly, Page Hostname reveals
a user’s browsing habits while extensions frequently break a
page URL into a hostname and a URL path before sending
them to external servers. Finally, Product ID is considered
separately for analyzing shopping-assisting extensions during
user visits to shopping sites like amazon and ebay.

While adding the low-level data types widens the scope
of the high-level types, we avoid any addition that makes
the high-level data types overlap and become ambiguous. In
particular, some low-level data types overlap (such as Page
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URL and Page Hostname) but one low-level data type does
not simultaneously fall into different high-level data types.

b) Extractor Design: The extraction of data types from a
key-value pair is formulated as a classification problem. For
each low-level data type, we create a classifier that determines
whether the key-value contains the data type or not. To achieve
low false positives (i.e., high precision), we design classifiers
based on pattern-matching rules as follows.

To extract Website Content and Web History data types,
ExtPrivA searches for the content and the URL of the
currently visited web page in the transferred key-values. For
example, if the traffic contains an exact match of the URL of
the web page, the extension collects the currently visited URL
or the Web History data type. Similarly, for certain websites,
we search for an ID in the URL such as an item ID on amazon
URLs (e.g., amazon.com/dp/ABC where the last part of the
URL, ABC, is the item ID). Inspired by the bait technique [1],
in addition to the existing website content, we search for the
bait value contained in the honeypage in the traffic. The bait is
selected to avoid collision with other common keywords in the
traffic key-values so that its occurrence in the traffic indicates
the collection of the Website Content.

To detect the collection of User Activity, we rely on
API documentation and the bait technique. Specifically, we
found that extensions utilized popular the Sentry monitoring
library [40] to monitor the keyboard input and mouse clicks.
In particular, "ui.click" and "ui.input" are used for a mouse
click and keyboard input events, respectively. Furthermore,
after ExtPrivA inputs a bait keyword W via keyboard, if
only part of W , but not the whole W , exists in the traffic, we
consider the extension monitored keystrokes.

c) Development of Data-Type Matching Rules: We follow
the widely-used bootstrapping procedure in which the set of
patterns is built iteratively with minimal human intervention
[4, 41]. To create the seed matching patterns for a data type T ,
we first performed an exploratory study on the data traffic of
the extensions that disclosed their collection of T . Using a set
of patterns, we found a set of matching key-value pairs where
we discovered the new patterns. The process is then repeated
while retaining only the most reliable patterns after each
iteration. The final patterns were found to change only slightly
with carefully-tuned seeds [41] and are listed in Table I.

2) Extraction of Data Receivers: Given a data type ex-
tracted from a key-value pair, the receiver of the corresponding
data flows is set to the extension that sent the data and
the external server where the data is sent, regardless of
the ownership of the external server. Because a key-value
is transferred to an external server by the execution of an
extension, the extension must first collect the data from
the browser or web pages before sending it to the external
server. The data types extracted by ExtPrivA (Table I) are
dynamic data that require the execution of a script or API
call to retrieve their values, rather than static/hard-coded data
like an extension’s version. For example, when an extension
sends a user’s mouse clicks to google-analytics.com for its

High-level Type Low-level Type Matching Pattern

Web History Page Title* Exact match of page title
Page URL Exact match of page URL
Page Hostname Exact match of page hostname

Website Content Hyperlink* Hyperlinks in <a> elements
Website Text* bait text value
Product ID Product ID on shopping sites

Location IP Address* IP addresses of testbed servers
Region* <city_name>, <zip_code>
GPS Coordinates* Coordinates of testbed servers

User Activity Mouse Click* ui.click events
Keystroke Logging* ui.input events/partial bait input

TABLE I: List of the high-level and low-level data types
supported by ExtPrivA. * marks the examples of low-level
data types provided by the Chrome Web Store [36].

development-analytics purposes, the extension is considered
to collect the user activity even if it does not own the Google
Analytics server.

Even when an extension directly shares user data with third
parties, it poses high privacy risks to users if the users are not
aware of the collection of their data due to the execution of the
extension. For example, when a translation extension transmits
the user-selected text to an external spelling-checking service,
the user needs to be aware of such data collection to avoid
inadvertently selecting sensitive data, such as an email with a
trade secret, to be sent to an external spell checker.

VI. DETECTION OF INCONSISTENCIES

A. Semantic Relationships

ExtPrivA detects the inconsistencies between an exten-
sion’s actual data collection and its privacy-practice disclo-
sures by analyzing the (in)consistencies between the extracted
privacy statements (Section III) and data flows (Section V).
As data flows and privacy statements are expressed in different
terms and granularity, in order to check their (in)consistencies,
ExtPrivA leverages ontologies of data types and receiving
entities that represent the relationship between terms to per-
form logical comparisons between the statements and flows.
An ontology o can be represented as a directed graph of
data-type terms where each edge between two nodes x and
y points from a more general term y to a more specific term
x. For example, there is an edge from Website Content to
Hyperlink data type. Inspired by prior work [7, 8, 13], the
semantic relationships and consistency conditions are defined
as follows.

Definition VI.1 (Semantic Equivalence). Two terms x and
y are semantically equivalent in an ontology o, denoted as
x ≡o y, if and only if they are synonyms in o.

Definition VI.2 (Subsumptive Relationship). Two terms x
and y have a subsumptive relationship (i.e., x has an "is-
a" relationship with y) in an ontology o, denoted as x <o y,
if there are a series of terms x1, x2, . . . , xn−1 (n ∈ N and
n ≥ 1) such as x <o x1, x1 <o x2, . . ., and xn−1 <o y.
Similarly, x ⊑o y ⇔ x ≡o y ∨ x <o y.
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B. Privacy-Statement Contradictions

Two privacy statements are said to be contradictory if their
data or receivers have subsumptive relationships with each
other while the statements have opposite sentiments (positive
vs. negative). For example, a contradiction occurs between
"we do not collect your personal data" and "we may collect
your location" because location subsumes under personal
data while keeping the receivers the same. We leverage the
logical contradiction rules in PolicyLint [7] to detect such
contradictions and formalize them as follows.

Definition VI.3 (Policy Logical Contradiction). Two privacy
statements (ei, collect, dk) and (ej , not_collect, dl) are con-
tradictory if (dk ⊑δ dl or dl <δ dk) and ei ⊑ϵ ej in a data-
type ontology δ and an entity ontology ϵ.

A main challenge in detecting contradictions between Dash-
board disclosures and privacy policies lies with the differences
between their data-type ontologies that comprise the sets of
data types and their subsumptive relationships. Specifically, the
Dashboard data types are defined by the Chrome Web Store
and follow narrower definitions than those used in the privacy
policies that contain broader statements about the websites,
services and extensions. For example, the term "personally
identifiable information" in privacy policies includes "IP ad-
dresses" [47] while the Store’s definition does not [37].

To resolve these differences and analyze privacy statements
uniformly, we treat the collection of the data types in Dash-
board disclosures as normal sentences so that they are com-
parable with the statements in the privacy-policy counterpart.
For example, the collection of Location in Fig. 7 is treated
as "we collect your location." Therefore, we use the privacy
policies’ ontologies that are broader than the Store’s ontologies
to analyze the privacy-statement tuples in both privacy policies
and Dashboard disclosures. In particular, we add the data-
type nodes and subsumptive-relationship edges in the Store’s
ontology graph into broader privacy-policy ontologies.

An advantage of this approach is that the unified ontologies
can be used to detect the contradictions among the statements
of the same privacy policies. While this approach excludes
the generated negative-sentiment statements that require a
complete declaration of all data types (Section III-B), ignoring
these statements do not generate any false positives.

C. Flow-to-Policy Consistency

Definition VI.4 (Flow-Relevant Privacy Statement). A privacy
statement sf = (rf , c, df ) is said to be relevant to a flow
f = (r, d) if and only if the flow’s receiver and data object
are subsumed under the corresponding terms of the statement,
i.e., r ⊑ϵ rf and d ⊑δ df in an entity ontology ϵ and a data-
type ontology δ.

Definition VI.5 (Flow-to-Policy Consistency). A data flow
f is said to be consistent with a set of privacy statements
S = {s} if and only if the set of flow-relevant privacy state-
ments Sf ⊂ S contains a positive-sentiment and no negative-

47,207

Extensions with
Dashboard disclosures

Extensions with
privacy-policy URLs

22,832 35,316

134,196 
extensions

# policies downloaded 27,30918,961

Fig. 4: Extension Dashboard disclosures and privacy policies.

sentiment privacy statement, i.e., ∃sf = (rf , c, df ) ∈ Sf s.t.
c = collect and ∄s′f = (r′f , c

′, d′f ) ∈ Sf s.t. c′ = not_collect.

Informally, given privacy disclosures that comprise a set of
privacy statements, a flow is consistent with the disclosures if
there is a positive-sentiment statement that states the collection
of the data type in the flow while there is no negative-sentiment
statement that describes the "non-collection" of the data. For
example, a flow f = (extension, selected text), where the se-
lected text in the currently visiting web page is collected by the
extension, has a relevant statement that "we collect the website
content" because website content includes the selected text
(i.e., selected text < website content) and we ≡ extension.
The flow is then consistent with the disclosures if there is not
any relevant statement that states otherwise.

A flow-to-policy inconsistency occurs when the Consistency
Condition (Definition VI.5) is not satisfied. We classify the
types of the inconsistencies into Correct Disclosure and Incor-
rect Disclosure. A Correct Disclosure occurs when the Con-
sistency Condition holds and an Incorrect Disclosure happens
if the condition does not hold. For example, a flow (extension,
selected text) is inconsistent with privacy disclosures if there is
a negative statement (extension, not_collect, website content).

We focus on the inconsistencies between the extension
behavior and the Dashboard disclosures since they follow the
same extension-specific data-type ontologies defined by the
Chrome Web Store. Comparing the data-collection behavior
with the privacy policies requires resolving the semantic gap
between the data types defined in the Store and the common
policies (Section VI-B) while the flow extraction is designed
based on the Store’s data-type ontologies. Furthermore, the
inconsistencies between the data flows and privacy-policy
documents have already been studied before [7, 13]. Finally,
because the complete list of data types is defined by the Store,
this flow-to-policy consistency analysis utilizes the negative-
sentiment privacy statements for the undeclared data types as
described in Section III-B.

VII. EVALUATION

We performed an in-depth analysis of the flow-to-policy
inconsistencies of the extensions on the Chrome Web Store.
Presented below are the experimental setup and results.

A. Extension Selection

We designed a crawler to collect extensions on the Chrome
Web Store. By following the Store’s sitemaps [34], the crawler
systematically visited and extracted the source code and de-
scription of each extension. The data collection was done by a
server located in the US on Feb 21, 2022, and took 18 hours
to complete.
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# Data % Exts.
Types

0 71.57
1 15.97
2 5.47
3 3.84
4 2.03

≥ 5 1.12

(a) Data types per
extension.

Data Type # Exts. (%)

Website Content 6,392 (13.54)
PII 4,545 (9.63)
User Activity 4,533 (9.60)
Authentication Info. 3,005 (6.37)
Location 2,562 (5.43)
Web History 2,549 (5.40)
Personal Comm. 929 (1.97)
Financial & Payment 509 (1.08)
Health Information 135 (0.29)

(b) Distribution of data types.

TABLE II: Data types of Dashboard disclosures.

Candidate URL Total

<all_urls> 7841
https://www.youtube.com 1068
https://www.coolstart.com 1002
https://www.google.com 893
https://www.mystart.com 804
https://www.facebook.com 686
https://www.amazon.com 651
https://mail.google.com 646

TABLE III: Top candidate
URLs.

# Flows # Exts.

1 618
2 169
3 121
4 83
5 11

Total 1002

TABLE IV: #
flows/extension.

Receiver # Flows
Type (Incons./Total)

First party 324/524
Analytics 265/314
Tracker 116/166
Ad network 50/51
Other 535/651

Total 1,290/1,706

TABLE V: # (inconsistent)
flows per receiver type.

The total number of extensions collected is 134,196. There
were 35,316 (26.32%) extensions providing a privacy-policy
URL while 12,484 of them had no Dashboard disclosures.
ExtPrivA downloaded and extracted plain text versions of
the privacy policies of 27,309/35,316 (77.33%) extensions
while the remaining policy URLs were inaccessible. Besides,
a significant number of extensions, 74,505 (55.52%), provided
neither Dashboard disclosures nor privacy-policy URLs. Fig. 4
shows the number of the privacy-disclosure types.

In the following experiments, we consider the 47,207
(35.18%) extensions that declared the Dashboard disclosures.
The disclosures have been required for the publication of an
extension on the Chrome Web Store since March 2021 [37].
We also observed a significant increase of extensions with
Dashboard disclosures, from 31,839 extensions in a crawl in
May 2021. Therefore, we assume that all extensions on the
Store will gradually include Dashboard disclosures.

B. Policy and Flow Characterization

1) Dashboard Disclosures: The majority of extensions state
not to collect any user data while a significant number of ex-
tensions state collection of only 1 data type. Of the extensions
with Dashboard disclosures, 33,787/47,207 (71.57%) state that
they do not collect or use any user data while 15.97% of the
remaining extensions state the collection of only 1 data type.
As shown in Table IIa, this kind of extensions (i.e., those that
collect only 1 data type) is the most common.

For each data type, the number of extensions that declared
the data collection is also small. The most common data type
collected by the extensions is Website Content (13.5%) while
the least common is Health Information (0.29%). Table IIb
shows the distribution of the collected data types.

2) Privacy Policies: Of the 47,207 extensions with Dash-
board disclosures, 22,832 (48.37%) contain privacy-policy
URLs. From these URLs, 18,961 (83.05%) privacy policies
were successfully downloaded. The system then extracted
8,012 extension-related privacy statements from 2,091 exten-
sions’ privacy policies. Because of the exclusion of the state-
ments that do not mention browser extensions, ExtPrivA did
not include the policies from the remaining extensions.

Of these privacy statements, 6,238 (77.86%) have a negative
sentiment and 1,774 (22.14%) have a positive sentiment. 1,538
extension policies contain negative sentiment statements that
discuss broad categories of data. Of the statements with a
negative sentiment, the data object "personally identifiable

information" or "PII" appears in 1,280 of these extensions.
This high percentage highlights the significance of negative
privacy statements as 83.22% (1,280/1,538) of the extensions
contain a negative sentiment that excludes the collection of a
broad data type.

C. Data Traffic and Flows

1) Experimental Setup: Given an extension E, ExtPrivA
first identifies the candidate URLs to activate the extension’s
functionality (Section IV-A1). The system then visits each
of the identified URLs in a clean browser instance with the
extension E installed at each start-up while disabling other
extensions to reduce execution and traffic noise. For each
URL, the system visits a real page and a honeypage. If the
URL has been recorded by the Web Page Replay proxy, the
network requests are redirected to the proxy to reduce loads
on the server side while improving the reproducibility of the
experiments. Since the number of the candidate URLs can be
large, for each extension, ExtPrivA visits the URLs until
either all URLs or a maximum of 10 URLs are visited.

For each URL, the browser waits until the home pages are
fully loaded by waiting until there are no network connec-
tions within a timeout of 5 seconds or a maximum of 30
seconds. Because the experimental servers used a fast Internet
connection, we empirically found that these timeouts were
sufficient to completely load most of the web pages. The page
loading heuristics are commonly used in the empirical settings
and provided as the default in the web browser automation
tools [28, 49]. Finally, ExtPrivA interacts with the browser
to activate the functionality of the extension (Section IV-A3). It
is worth noting that an experiment does not raise false positives
if the extension is not successfully loaded or its functionality
is not activated. The analysis was performed on a cluster of 8
machines with 1.18TB of RAM in a university in the US and
took 70 hours to complete.

2) Extension URL Patterns: From the 47,207 extensions
that provide Dashboard disclosures, we extracted 129,218
candidate URLs on 28,618 domains. The distribution of the
domains has a long tail with only 248 domains with a fre-
quency greater than 100. The most common extracted domains
are yahoo.com and google.com which involve a large number
of country-specific subdomains for their services. The third
most common domain is coolstart.com which hosts a new-tab
page for numerous new-tab-customization extensions. Table III
shows the most common extracted candidate URLs.
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3) Extracted Key–Value Pairs: ExtPrivA activated the
extensions’ functionality, captured their network traffic and
extracted 680,923 key–value pairs sent from 3,904 extensions
to 3,280 unique hosts and 6,902 external server endpoints each
of which is a combination of a host and a path. The most
common host is www.google-analytics.com (80,171/680,923
(11.77%) key-value pairs). The high percentage of traffic to
Google Analytics indicates its popularity among the extensions
for data collection.

To activate an extension’s functionality, ExtPrivA visited
5.1 candidate URLs on average (1.82 SD). The numbers of
the unique web page URLs and website domains on which
the extensions generated the data traffic are 1,532 and 1,381,
respectively. The top website hostnames and domains are listed
in Table IX (Appendix D).

4) Extracted Data Flows:

a) Flow Data Types: From the traffic key–value pairs,
ExtPrivA extracted 1,706 unique data flows for the data
types received by 1,002 extensions. Each extension collects 1.7
data types on average (1.04 SD). Table IV shows the number
of data flows per extension.

The most common data types extracted from the extensions
are the URLs and hostnames of the currently visited web
pages, which are under the Web History high-level data type.
Such data types are privacy-sensitive as they can be easily used
to construct a user’s web browsing habit. Table VI shows the
distribution of the extracted data types over extensions.

b) Flow Receivers: We adopted PurPliance to determine
the functionality of data-flow receivers based on extension de-
scriptions and well-known advertising/analytics provider lists.
First, rather than using Android package names, we extracted
first-party domains as the domains of the privacy policy
URL and publisher websites on each extension description
web page. Second, we replaced PurPliance’s mobile ad and
tracking filters with those designed for websites [2] to identify
online advertising networks and analytics providers. Third, to
improve coverage further, if a host did not fall into these lists,
we matched it with the 1Hosts Xtra list [10] to identify online
trackers. Finally, if a receiver was not identified by these ad-
filtering lists, we classified it as Other.

As shown in Table V, the most common receiver types are
extensions’ own hosts (first parties) and analytics providers.
The first-party hosts have a long-tail distribution with 312
unique hosts for 524 flows. The most common first-party
and analytics hosts are bar.maxtrigger.com (15/524 flows) and
www.google-analytics.com (76/314 flows), respectively. On-
line trackers and ad networks are less common than analytics
services. The most common tracker and ad network hosts
are sentry.io (12/166 flows) and adservice.google.com (32/51
flows), respectively. The Other hosts that were unidentified
by the lists of well-known ad/analytics services have a long-
tail distribution, which comprises 163 hosts for 651 flows and
includes service hosts such as the Google Cloud Translation
end point translate.googleapis.com.

First Party 17

Tracker 10

Other 1

(Website Content)
Hyperlink 14

(Web History)
Page URL 8

(Website Content)
Product ID 5

(Web History)
Page Title 1

1p Production - Improve Service 14

1p Production - Provide Service 10

3p Marketing - Advertising 3

(Not For) 3p Marketing - Advertising 1

Receiver Data Type Data-Usage Purpose

Fig. 5: Purposes of data collection. From the Data Type to
Data-Usage Purpose, blue and red lines represent the usage
of the first and third parties, respectively. Green lines indicate
that a collected data type is not used for third-party purposes.
1p and 3p stand for the first and third parties, respectively.
Each label contains the number of instances extracted.

c) Data-Collection Purposes: To understand the purposes
of data collection, we identified the privacy statements that
were relevant to consistent data flows based on Defini-
tions VI.4 and VI.5, and extracted data-usage purposes from
the statements using PurPliance. Of the 1,706 flows extracted
in Section VII-C4a, we were able to find 20 privacy statements
of 11 sentences with data-usage purposes which were relevant
to 21 unique flows of 13 extensions. Since each flow may
have multiple purposes, we expanded the flows to 28 flows so
that each flow has exactly one usage purpose. The number of
flows with specified purposes is not high because only part of
privacy statements in a privacy policy specifies purposes (e.g.,
25.8% of statements for Android apps [13]) while we even
narrowed the statements down to only extension-related ones.

The results show that extensions primarily collected data for
improving (14/28 flows) or providing services (10/28 flows)
The most common data types are Website Content (Hyperlink
and Product ID) and Web History (Page URLs of the currently
visiting pages). Notably, three flows of an extension collected
the data types for third-party advertising purposes by stating
"We may share aggregate information about how our users use
www.valurank.com or the extension with advertisers, business
partners, sponsors, and other third parties" [62]. However, the
Web Store’s Limited Use policy prohibits any transfer of user
data to advertisers [35]. The extracted purposes do not contain
the full spectrum of data-usage purposes as when the entire
privacy policy is analyzed. Fig. 5 shows the breakdown of the
data-usage purposes.

To validate PurPliance’s purpose extraction, two authors
independently labeled the 11 extracted sentences using the pur-
pose classes in PurPliance’s purpose taxonomy. We identified
24 purposes of the 11 sentences and the purpose extraction
had 95.00% (19/20) precision and 79.17% (19/24) recall. The
precision is high, as PurPliance extraction uses strict rule-
based matching, and is comparable to PurPliance’s results [12].
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Data Type # Extensions
High-level Low-level (Inconsistent/Total)

Web History Page URL 505/616
Page Hostname 304/345
Page Title 53/70
Total 672/800

Website Content Hyperlink 149/229
Product ID 139/215
Website Text 70/116
Total 303/472

Location IP Address 36/53
Region 11/24
GPS Coordinate 4/5
Total 48/69

User Activity Mouse Click 12/18
Keystroke Logging 7/15
Total 14/23

Total 820/1002

TABLE VI: Distribution of the extracted data types and
detected inconsistencies. Each row reports # of extensions that
have inconsistencies and ones that have data flows extracted.

D. Findings

1) Finding 1: A significant number of extensions fail to
fully declare the data types that they collect from users in
their privacy disclosures: ExtPrivA detected 820 extensions
with more than 84.6M users that have a data flow inconsistent
with their Dashboard disclosures. These extensions constitute
81.84% (820/1,002) extensions with an extracted data flow.
The inconsistent data flows are 75.62% (1,290/1,706) of the
total extracted flows. Each extension contains 1.57 inconsistent
data flows and 103,190 users on average. This result under-
scores the incomplete privacy disclosures on the Chrome Web
Store that pose high privacy risks to a large number of users.

While ExtPrivA detects inconsistencies in various types
of extensions, the inconsistent extensions do not spread evenly
over extension categories. The most common categories are
Productivity and Shopping with 425 and 261 extensions,
respectively. These categories tend to collect and use more
data to customize and enhance web pages. For example, they
include shopping price analytics, new-tab customization and
translators. The distribution of the inconsistent extensions over
the categories is shown in Fig. 6 and Table XII (Appendix F).

The first-parties and analytics services are the most common
receivers: 45.66% (589/1,290) of the inconsistent flows involve
data transfer to them (Table V). These two parties have high
percentages of the top 2 categories, Productivity (37.70%)
and Shopping (68.26%). The first-party is the most common
receiver (43.69%) in the Shopping category. Fig. 6 shows the
breakdown of data flows by receivers and extension categories.

2) Finding 2: Dashboard disclosures and privacy policies
contain contradictory statements: ExtPrivA detected 525
pairs of contradictory privacy statements in the privacy policies
of 17.22% (360/2,091) extensions that have extension-related
statements (Section VII-B2). Each contradiction comprises one
positive statement and one negative statement, either or both
of which are from the privacy policies. Because Dashboard
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Fig. 6: Distribution of inconsistent extensions and flow-
receiver types over extension categories.

Type Positive Stmt. Negative Stmt. # Contradictions

1 Privacy policy Dashboard 388
2 Dashboard Privacy policy 73
3 Privacy policy Privacy policy 64

Total 525

TABLE VII: Number of contradictory pairs of privacy state-
ments per statement type. Stmt stands for a privacy statement.

disclosures are template-based, there are no contradictions
when both statements are from the Dashboard disclosures. The
distribution of the contradiction types is shown on Table VII.

The most common contradiction type comprises one state-
ment from the Dashboard disclosures that states the non-
collection of any data and another statement from the privacy
policy that claims the collection of certain data. This type
constitutes 73.90% (388/525) of the detected contradictions.
Such discrepancies between the privacy policies and Dash-
board disclosures are a serious problem and can thus result in
the suspension/removal of the extensions from the Store [37].

These extensions had a total of 27.3M users where 16
extensions have more than 100k users and 4 have more than
1M users. For example, AdBlock, that has more than 10M
users, declared that it would not collect or use any user data
on the Dashboard disclosures but its privacy policy stated that
"when the AdBlock extension communicates with AdBlock
servers, we receive the computer’s IP address" [38]. The policy
also mentioned that "after six months we will remove any
identifying information such as IP address from our log files
and databases," i.e., AdBlock databases record IP addresses.

There are multiple potential causes of the contradictions.
First, the manual creation of these policies is error-prone,
especially when the authors of the privacy policies and Dash-
board disclosures are different. Second, the developers might
reduce the number of declared data types in their Dashboard
disclosures to reduce the time to publish the extension on
the Chrome Web Store. At the same time, the privacy policy
tends to contain a comprehensive description of data-collection
practices to cover future use-cases.

3) Case Studies: As a case study, the CapitalOneShop-
ping [14] extension (8M+ users), using its background
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page, sent the full URLs of the currently visiting prod-
uct pages of shopping websites (like ebay and amazon),
the time of visits and a persistent user ID to its server
at track.capitaloneshopping.com. The extension automatically
collected these pieces of information every time we visited
a new product page even without clicking the extension
icon. While the information might be used for providing the
extension’s services, such as offering coupons, it is "browsing-
related data" under the definition of the Web History data type
and could be easily used to determine the browsing paths of
users. Although the extension disclosed the collection of Web
Content, it omits the actually-collected Web History from its
Dashboard disclosures.

Similarly, the SearchPreview extension [54] (100k+ users)
declared not to collect or use any user data but the data flows
showed that the content of Google search result pages was
transferred to the extension’s server. The extension used the
information to display the previews (thumbnails) of search
results on Google search pages. In particular, the full URL
of the Google search page and URLs of the search results
were transferred to searchpreview.de. Since a Google search
page URL includes the query term, browser and language
information, the collected information is Website Content.
However, such data collection was omitted from the Dashboard
privacy disclosures.

4) Potential Root Causes: A direct cause of the flow-to-
policy inconsistencies is that extensions tend to declare a
limited number of user data types that they collect, effectively
omitting their data collection practices. In particular, 56.95%
(467/820) of the inconsistent extensions disclosed "no user
data collection or use" in their Dashboard disclosures while
the extensions still collected certain data types. In addition,
declaring less collected data types might shorten the Store’s
security review and time of publishing extensions. For ex-
ample, 71.57% (33,787/47,207) of extensions disclosed not
to "collect or use any user data" while the other 15.97%
disclosed to collect only one data type. Furthermore, the most
common data types that are collected without declaration is
Web History which occurred in 672/1,002 extensions. The
extensions collected the URL or title of the currently visited
web page while excluding them from the privacy disclosures.
Omitting the sensitive browsing history data type might avoid
being suspicious to users and increase their installation rate.

Similarly, the extensions commonly used analytics and
monitoring libraries but might not fully configure the libraries
to limit the data they collect. From the data traffic of exten-
sions, we found that many extensions collect user data for
analytic purposes yet failed to disclose them in the privacy
disclosures. For example, 14% of the extracted flows were
sent to Google Analytics or Sentry analytics libraries [40].
Therefore, we recommend the developers to minimize the data
that is collected by the external analytics libraries and services.

E. Evaluation of Detection Performance

We now evaluate the performance of the extraction and
consistency analysis. Since our goal is to minimize the false

positives, we focus on the evaluation of system precision
by verifying the correctness of randomly-selected samples.
The verification was done manually by two PhD students
with no less than 3 years of experience in user-privacy
research. The annotators first agreed on a common annotation
scheme/verification workflow, and then worked independently
to verify the correctness of the system output. Finally, they
held a follow-up meeting to reconcile the differences, if any.
Since dynamic analysis cannot exercise all behaviors of an
extension while making a ground-truth dataset of privacy
policies and flows requires significant effort and time [41, 63],
we leave the recall-rate evaluation as future work.

1) Performance of Contradiction Detection: To evaluate
the performance of contradiction detection, we verified the
pairs of the contradictory privacy statements detected by
ExtPrivA. The annotators read the corresponding sentences
of positive and negative statements to assess whether the
extracted statements were indeed contradictory or not. Each
privacy statement could be generated from different sentences
in the privacy policies where the sentences were slightly
different in grammar but expressed the same (non)collection
of the same data types. When the sentences were ambiguous
due to the lack of context, we traced them back to the
extension’s privacy-practice disclosures and privacy policies to
fully understand the statements. Specifically, for each sentence,
we identified the stated data types, receiving entities and
whether each type was collected by each entity or not. Finally,
we determined contradictions based on Definition VI.3.

The result shows that the detection achieves 91.7% pre-
cision. Of the 60 randomly selected statement pairs of 56
extensions, only 5 were false positives. Some of these false
positives were due to the lack of cross-sentence analysis such
as co-reference resolution. For example, a statement of the
#fastset For Social Media extension privacy policy applied to
another different extension of the same developer but such a
mention could only be understood by reading the preceding
sentences.

2) Accuracy of Data-Type Extraction: We verified the data
types extracted from key-value pairs by attempting to under-
stand the intention of the data traffic from the context which
includes the web page being visited, the extension’s descrip-
tion and external sources. In particular, we used the Chrome
DevTools to obtain other key-values in the data traffic and
traced them back to the request-initiated script to identify the
data source of the key-values. Inspired by a prior mobile-app
traffic analysis [41], we leveraged two properties of key-value
pairs to infer the data types: 1) naming conventions indicate
the data types of a key-value pair and 2) external knowledge
such as the extension description can be a strong indication of
data-collection purposes. For example, given key=regionName
and value=<city_name>, the key-value pair likely represents
the transfer of the user’s geographical location.

We evaluated the extraction’s precision on 330 randomly se-
lected samples (30 samples per data type), showing a ≥93.3%
precision. Since the extraction is based on strict matching
rules, a match is likely a correct occurrence of the data

12



type in a key-value pair. One of the lowest precisions is the
Hyperlink data type that indicates collection of the hyperlinks
of the currently visited web page, because, in some cases, the
links were inserted by the extensions, not the original web
page content. The precision for each data type is provided in
Table XI of Appendix E.

3) Accuracy of End-to-end (In)consistency Detection:
Given a detected inconsistency, we attempted to reproduce the
result by using only built-in tools of the browser to evaluate
the end-to-end performance of the inconsistency detection.
We installed the extension on a clean browser instance and
captured the network traffic of the tab and the background
pages via Chrome DevTools to reproduce the data-collection
behavior of the extension. We read the privacy disclosures and
verified the correctness of the privacy-statement extraction.
Finally, we assessed whether the data-collection behavior
violated the privacy disclosures or not.

Inconsistencies were detected with a precision of 85%.
We were able to reproduce 51 of the randomly selected 60
detected inconsistencies of 59 extensions. Manual verification
of each inconsistency took 15 minutes on average, so the two
annotators spent 30 hours in total. Most of the false positives
were due to a non-data-collection callback function of an
extension script that was included as one of the initiators of the
network traffic. For example, an extension installed an HTTP-
request event handler to check the occurrence of a URL pattern
in the HTTP requests even if it did not do any data collection.

VIII. LIMITATIONS AND FUTURE WORK

While we aim to minimize false positives, ExtPrivA
has some limitations in detecting inconsistencies. Although it
supports widely used data types, ExtPrivA still does not
support five context-sensitive data types including sensitive
personal data. It uses simple heuristics to extract extension-
related sentences and analyzes the policies on a sentence
basis. Finally, it cannot trigger the data-collection behavior
of the extensions that require sign-in. Discussed below are
ExtPrivA’s limitations and our future work.

a) Applicability of Analysis Techniques: Detection of the
inconsistencies between the privacy disclosures and the execu-
tion of extensions is critically important for all stakeholders in
the web browser ecosystem. The removal of an extension from
a marketplace would cause a substantial loss to the developers.
The deviation of actual data collection and usage from the
stated practices is not expected by the users and causes a loss
of users’ trust in the web browsers’ privacy protection. Finally,
the extension stores can leverage the analysis techniques/tools
to audit and detect privacy breaches.

As an end-to-end framework, ExtPrivA can be easily
integrated into the Chrome Web Store’s vetting process or an
IDE to help developers verify that their extensions operate
consistently with their stated privacy policies. As extensions
may use third-party libraries, it is hard and expensive for
developers to check their (in)consistencies manually. A benefit
of dynamic analysis is its ability to provide the inputs to

reproduce the inconsistencies and facilitate the debugging
process. Furthermore, even with an extensive vetting process,
our results have shown the Chrome Web Store still misses
the extensions that provide misleading privacy-practice disclo-
sures. We plan to communicate our findings to the developers
and Chrome Web Store to help them fix the inconsistencies in
their extensions.

b) Analysis of Non-Chrome Browser Extensions: Since
most of the ExtPrivA pipeline utilizes black-box analysis
methods, it can be extended to detect the inconsistencies of
non-Chrome web browsers — such as Firefox and Safari —
extensions. First, the free-form privacy policies of non-Chrome
browser extensions are not different from those of Chrome-
based browsers. Extracting privacy policies only needs to
handle the differences in the extension description web pages
in different extension stores. Similarly, while the internal
API of Chrome that extracts the initiators of network traffic
does not automatically translate to Firefox and Safari, these
browsers have equivalent APIs, such as the traffic initiator of
Firefox network analysis [18]. Finally, the browser automation
tool [49] of ExtPrivA’s testbed already supports multiple
browsers. We leave the multi-browser support for Firefox
and Safari extensions, which accounted for only 18% of the
desktop browser market share (less than 10% each) [61], as
our future work.

c) Detection of Contradictions in Privacy Disclosures:
The existence of contradictions between the privacy policies
and the Dashboard disclosures highlights the inadequacy of
manual checking for the (in)consistencies of privacy disclo-
sures. However, ExtPrivA cannot fully analyze the privacy
policies due to the inherent limitation in determining the
scope of policy statements, i.e., whether a sentence is about
browser extensions or not. Some recent approaches [7, 13] still
analyze privacy policies at the sentence level due to the lack
of a holistic analysis of the entire documents. While solving
this problem requires advances in both NLP and privacy-
policy analysis, the recent ML models specialized in privacy
policies [5] will help detect the contradictions more effectively.

d) Compliance of Data-usage Purposes: To comply with
the Chrome Web Store developer policies, extension develop-
ers must agree with the Limited Use policy that prohibits the
data types collected by extensions from being used or trans-
ferred to advertisers for advertising purposes [35]. Therefore,
one can check the compliance with this policy by analyzing
the data-usage purposes of the extensions. However, since
determining the purposes of data collection without server-
side information is still challenging [13, 41] and there is no
prior work on analyzing the purposes of data usage for browser
extensions, we leave this analysis as future work.

e) Dynamic Analysis and Log-in Extensions: Due to the
limitations of dynamic analysis, ExtPrivA cannot exercise
all execution paths of an extension to generate the transfer of
all possible data types. Like software testing, it is non-trivial
to generate inputs to completely activate all functionalities
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of a sophisticated extension. Furthermore, supporting exten-
sions that require login is challenging because the account
registration process is complex and services frequently deploy
bot-prevention to avoid automated account creation and detect
fake identities. While recent techniques can generate input text
for login Android apps [30], automatically performing account
registration and login on web apps requires further advances
in web page analysis and NLP. With improvements from the
research in extension/JavaScript dynamic analysis [16, 43] and
input generation [30], ExtPrivA can cover more data flows
of each extension to detect more inconsistencies.

f) Extraction of Context-Sensitive Data Types: These types
can be extracted from data flows by analyzing the semantics
of data-collection contexts. In the future, we would like to
support the data types by analyzing input fields (e.g., <input>
attribute type="password" indicates password (authentication
information)), performing static analysis on extension code
(e.g., registration prompts in extensions’ pop-up pages) and
analyzing extension behavior after signing into websites.

IX. RELATED WORK

A. Detection of Privacy Leakage

Researchers proposed various ways of examining the execu-
tion of web browser extensions to detect their privacy leakage,
i.e., unexpected execution of privileged API and the flows of
sensitive data to servers or disk storage. Hulk [43] introduced
two ways to trigger malicious behavior, specially structured
web pages called honeypages, and an event-handler triggering
fuzzer, to detect affiliated fraud, credential theft, ad injection
or replacement, and social network abuse. Starov et al. [60]
analyzed and decoded network traffic of extensions to find
the leakage of users’ sensitive data, such as browsing history
and search-engine queries. However, they did not determine
whether such data collection violates the extensions’ privacy
policies or not.

Other researchers focus on JavaScript analysis techniques.
ExtensionGuard [15], Mystique [16] and JTaint [64] presented
JavaScript taint analysis schemes to detect the leakage of
sensitive information in the data flows during the extension
execution. Somé [59] analyzed the vulnerabilities in message
passing interfaces of web extensions that can be exploited
by web applications to access privileged browser APIs and
sensitive user information. DoubleX [9] developed static anal-
ysis techniques to detect vulnerable internal data flows of an
extension that can be exploited by attackers.

Another thread of research developed ML-based classifiers
to classify whether a certain extension behavior is malicious or
not. Aggarwal et al. [3] created a classifier based on Recurrent
Neural Network (RNN) to classify whether a sequence of API
calls indicates the stealing of sensitive user information or not.
Zhao et al. [65, 66] attempted to determine the legitimacy
of extensions’ data flows based on the main functionality
provided by the extensions.

None of the prior studies has analyzed the privacy policies
of browser extensions to detect flow-to-policy inconsistencies.

They rely on an expert analysis of the execution and network
logs to determine whether the detected sensitive data transfer
is malicious or not [16], but such a manual analysis greatly
limits the scalability of the detection and the types of data
leakage that can be detected. Furthermore, prior network-
traffic-based analyses [43, 60] did not consider the receivers
of the data traffic of web browser extensions, and hence may
suffer from false positives where an extension sends user data
to its servers to provide its functionality, not for malicious
purposes. ExtPrivA avoids these limitations by analyzing
privacy-practice disclosures and extracting data types/receivers
in data traffic of extensions to determine the legitimacy of their
data practices.

B. Analysis of Privacy Statements
Recently, researchers analyzed the statements in privacy

policies of mobile apps and online services. PI-Extract [12]
extracted fine-grained data types and collection/sharing actions
performed thereon in website privacy policies. PolicyLint [7]
detected contradictory policy statements in the privacy policies
of mobile apps. However, none of these addressed the privacy
statements and policies of browser extensions that require
platform-specific interpretation and analysis.

C. Flow-to-policy Consistency Analysis
Inconsistencies between the privacy policies and the actual

data collection of mobile apps have been the subject of recent
research. Zimmeck et al. [67] conducted static analysis on
Android apps to detect inconsistencies between their collected
data types with those stated in the apps’ policies. PoliCheck [8]
improved the consistency analysis by considering the re-
ceivers in data flows from mobile apps to external receivers.
PurPliance [13] modeled data-usage purposes to detect the
inconsistencies in the data-usage purposes between the stated
privacy statements and actual data collection of Android apps.
However, none of the prior works have analyzed the flow-to-
policy inconsistencies of browser extensions whose execution
model is fundamentally different from mobile apps.

X. CONCLUSION

We have presented a novel system, ExtPrivA, to detect
inconsistencies between the privacy disclosures and the actual
data collection of browser extensions. ExtPrivA is an end-
to-end system that performs a fine-grained analysis of data
collection of browser extensions to detect their flow-to-policy
inconsistencies. We used ExtPrivA to conduct a large-scale
study of 47,207 extensions that provide Dashboard disclosures
in the Chrome Web Store. Of these, ExtPrivA detected
1,290 inconsistent data flows of 820 extensions with more than
84.6M users. ExtPrivA has also detected 360 extensions
that contain 525 pairs of contradictory privacy statements
in their Dashboard disclosures and privacy policies. These
findings highlight critical issues in the privacy notices of
web extensions that may mislead users about their privacy
practices. These findings will hopefully help all the involved
parties remove/minimize such inconsistencies and enhance the
users’ privacy in the web browser ecosystem.
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APPENDIX A
LIST OF TESTING URLS

The testing URLs used by ExtPrivA to generate candidate
URLs are listed in Table VIII.

APPENDIX B
PRIVACY POLICY CRAWLING

To obtain the privacy policy documents, for each exten-
sion, ExtPrivA extracts the privacy policy URL from the
extension’s overview page. We use a clean instance of Chrome

Category URL

Search https://www.google.com/search?q=statistics&hl=en
https://www.bing.com/search?q=statistics

Shopping https://www.amazon.com/gp/product/B085TFF7M1
https://www.amazon.com/dp/B07G7T3M6C
https://www.ebay.com/itm/323879722346
https://www.aliexpress.com/item/4000901174719.html

TABLE VIII: Testing URLs for generating candidate URLs.

Domain # Exts.

1 amazon.com 2,243
2 google.com 1,924
3 ebay.com 1,899
4 aliexpress.com 1,845
5 bing.com 1,712
6 coolstart.com 268
7 youtube.com 34
8 taobao.com 26
9 linkedin.com 26
10 facebook.com 25

Total 3,904

(a) Site domains.

Hostname # Exts.

1 www.amazon.com 2,238
2 www.ebay.com 1,899
3 www.aliexpress.com 1,844
4 www.google.com 1,817
5 www.bing.com 1,712
6 mail.google.com 86
7 www.youtube.com 33
8 inbox.google.com 30
9 accounts.google.com 27
10 www.linkedin.com 25

Total 3,904

(b) Site hostnames.

TABLE IX: The top website domains/hostnames and the
number of extensions that generated the network traffic. One
website can be tested on multiple extensions.

browser that fully executes JavaScript to extract privacy poli-
cies of dynamic web pages. ExtPrivA then extracts plain text
from the HTML by using PolicyLint preprocessing tool [7].
The plain text is then segmented into sentences by using a
transformer-based neural model en_core_web_trf included in
the Spacy NLP library [6].

APPENDIX C
LIST OF DATA TYPES ON CHROME WEB STORE

The list of data types used by the Chrome Web Store is
shown in Table X and Fig. 7.

APPENDIX D
TESTED WEBSITES

The top website hostnames and domains that generated the
network traffic are listed in Table IX.

APPENDIX E
PRECISION OF DATA TYPE EXTRACTION

The precision of data-type extraction is shown in Table XI.

APPENDIX F
DISTRIBUTION OF INCONSISTENT EXTENSIONS

Table XII shows the distribution of inconsistent extensions.
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Data Type Example

1 Personally identifiable info. Name, address, email address, age, identification number
2 Health information Heart rate data, medical history, symptoms, diagnoses, procedures
3 Financial and payment info. Transactions, credit card numbers, credit ratings, financial statements, payment history
4 Authentication information Passwords, credentials, security question, personal identification number (PIN)
5 Personal communications Emails, text or chat messages, social media posts, conference calls
6 Location Region, IP address, GPS coordinates, information about things near the user’s device
7 Web history The list of web pages a user has visited, browsing-related data such as page title and time of visit
8 User activity Network monitoring, clicks, mouse position, scroll, keystroke logging
9 Website content Text, images, sounds, videos, hyperlinks

TABLE X: List of data-types and examples specified by the Chrome Web Store policies [36].

Data # Flows # Samples Precision (%)

Page URL 7,262 30 100.00
Page Hostname 2,256 30 100.00
Product ID 1,302 30 100.00
Website Text 1,054 30 100.00
Hyperlink 786 30 93.33
Region 404 30 93.33
IP Address 396 30 100.00
Page Title 279 30 96.67
Mouse Click 133 30 100.00
GPS Coordinate 68 30 100.00
Keystroke Logging 59 30 100.00

Overall 13,999 330 99.37

TABLE XI: Precision of data-type extraction in data flows. The overall precision is a weighted average by the number of flows
per data type.

Category # Inconsistencies % Inconsistencies # Extensions

Productivity 557 43.18 351
Shopping 293 22.71 190
Developer Tools 138 10.70 66
Accessibility 84 6.51 52
Search Tools 62 4.81 51
Social & Communication 68 5.27 48
Fun 56 4.34 40
News & Weather 6 0.47 6
No-Category 10 0.78 6
Blogging 9 0.70 5
Photos 6 0.47 4
Sports 1 0.08 1

Total 1290 100.00 820

TABLE XII: Distribution of detected inconsistent extensions over category.
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Data usage

The content of this form will
be displayed publicly on the
item detail page. By
publishing your item, you are
certifying that these
disclosures reflect the most
up-to-date content of your
privacy policy.

What user data do you plan to collect from users now or in the future? (See FAQ for more information)

For example: name, address, email address, age, or identification number

For example: heart rate data, medical history, symptoms, diagnoses, or procedures

For example: transactions, credit card numbers, credit ratings, financial statements, or payment history

For example: passwords, credentials, security question, or personal identification number (PIN)

For example: emails, texts, or chat messages

For example: region, IP address, GPS coordinates, or information about things near the user’s device

The list of web pages a user has visited, as well as associated data such as page title and time of visit

For example: network monitoring, clicks, mouse position, scroll, or keystroke logging

For example: text, images, sounds, videos, or hyperlinks

I certify that the following disclosures are true:

You must certify all three disclosures to comply with our Developer Program Policies

0 / 1000

Personally identifiable information

Health information

Financial and payment information

Authentication information

Personal communications

Location

Web history

User activity

Website content

I do not sell or transfer user data to third parties, outside of the approved use cases

I do not use or transfer user data for purposes that are unrelated to my item's single purpose

I do not use or transfer user data to determine creditworthiness or for lending purposes

Fig. 7: Privacy-practice declaration on the Chrome Developer Dashboard.
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