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Abstract—Driving apps, such as navigation, fuel-price, and road
services, have been deployed and used widely. The car-related nature
of these services may motivate them to infer the type of their users’
vehicles. We first apply systematic analytics on real-world apps to
show that the vehicle-type — seemingly unharmful — information
may have serious privacy implications. Next, we demonstrate that
attackers can harvest the features of these mobile apps to infer the
car-type information in a stealthy way. Specifically, we explore the
use of zero-permission mobile motion sensors to extract spectral
features for differentiating the engines and body types of vehicles.
Based on our experimental results of 17 different cars, we have
achieved 82+% and 85+% overall accuracy in identifying three
major engine types and four popular body types, respectively.

I. INTRODUCTION

This paper presents a new finding: the motion sensors used
by driving apps on commodity smartphones may reveal the
car-type information, thus posing a severe threat to users’
privacy. This finding is motivated by two essential pieces of
background information: 1) the profound implication of car-type
information, and 2) the excessive and unregulated usage of
zero-permission motion sensors in driving apps.

Car-type information represents the physical configuration
— e.g., engine and body type — of the car. This data has
intrinsic connections to highly private information, including
spending habit, demographics, and even political leaning, e.g.,
conservative vs. liberal. For example, social perceptions [1] and
prior research [2] have shown that the vehicle body type has
a strong correlation with the owner’s personal information [3].
This rich implication of a vehicle one owns/drives can, therefore,
be an attractive target for various parties — including advertisers,
political campaigners, lobbyists, etc. — who may exploit and
monetize it. Adversaries may harvest the vehicle characteristics
and then exploit it to infer people’s sensitive information, thus
sabotaging their privacy. For example, based on the correlation
between people’s ideology and cars they drive [2], the adversary
can infer victims’ most probable political tendencies, thus
enabling various adversarial practices [4].

Due to the sensitivity of the characteristics of people’s
vehicle, its public access is usually restricted. For example,
in the U.S., people’s vehicle information data is organized
& maintained by Department of Motor Vehicles (DMV) —
a designated government agency, and is accessible only by
authorized entities, e.g., the law enforcement. A natural question

is then “is it possible to mitigate the hindrance of accessing
the user’s car-type information?"

We explore if the car-type information can be leaked via
motion sensors being used by driving apps, such as navigation
(Google maps, Waze), driver services (GasBuddy and ParkWhiz),
and dashcam, to name a few. We focus on driving apps because
they usually have close connection to their user’s driving,
thus offering opportunities for attackers to implement practical
side-channel privacy attacks on the car-type information. The
usage of motion sensors has become essential in driving apps
for a wide range of tasks. For example, navigation apps use the
accelerometer and dead-reckoning to track moving vehicles when
the satellite signal is unavailable (e.g., in a tunnel). For driver
assistance apps, motion sensors are widely used for detecting
abrupt braking and/or acceleration. However, despite their ever-
increasing popularity, motion sensors do not require any privacy
check, e.g., the user’s consent. These features together make the
motion sensor an ideal data source for achieving the side-channel
information leak. An important question is then “is it possible
to infer the vehicle-type information with the motion sensor?"

Our proposed system, called VeFi, is the first that enables car-
type information to be leaked via commodity driving apps with
zero-permission. In particular, we will show that by using the
motion sensors on commodity smartphones, one can classify a ve-
hicle’s engine type (e.g., number of cylinders) and body type (e.g.,
compact, sedan, SUV, and pick-up truck). Hence, attackers can
leverage VeFi to drastically lower the bar for accessing/inferring
the user’s vehicle characteristics and thus causing large-scale
leakage of various private information, such as people’s spending
habits, demographic information, and even political affiliations.

Characterizing vehicles based on their vibration patterns is,
however, challenging because of the complexity of the vehicle
vibration and the simplicity of motion sensors. Specifically, a
vehicle is a complex compound of mechanical and electrical
components. A vehicle’s vibration pattern varies greatly with
its physical state, e.g., idling (the vehicle is stationary while
the engine is on) vs. moving. Such a variability makes it
difficult to develop/use a unified approach to characterizing the
vehicle’s vibration pattern. Moreover, motion sensors generate
a time-series data that only provides limited information. For
example, the common sampling rate of motion sensors is 100
Hz, making it impossible to capture a signal with the vibration
frequency above 50Hz, according to the Nyquist Theorem [5].

To overcome these challenges with the motion sensors of
commodity mobile devices, we propose a novel scheme with
flexible modality for characterizing vehicles in different states.
Specifically, for an idling vehicle, we found the spectral feature of
a high-frequency component can lead to insights of the vehicle’s
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engine-type. Note that our idling vehicle’s analytics pipeline is
training-less — one (e.g., a malicious entity) can characterize the
engine-type based on the sensor readings and then derive insights
without training a statistic model. To characterize moving
vehicles, we propose a new feature engineering scheme that
can capture the inherent vibration patterns of different vehicle
body-types. The thus-extracted feature can be applied to various
machine-learning classifiers for determining the vehicle’s body-
type. Using the real-world driving data collected from 17 different
vehicles, our training-less scheme achieves 82+% overall accuracy
in classifying engines with different numbers of cylinders. The
data analytics pipeline for moving vehicles achieves 85+%
accuracy in differentiating four representative vehicle types.

II. BACKGROUND

A. Primer of Motion Sensors
The motion sensors embedded in a mobile device are to

capture its user’s motion. Their versatile roles in motion
sensing (i.e., angular speed and acceleration) is achieved by
the embedded inertial measurement units (IMUs). According
to a recent survey [6], the penetration rates of accelerometer
and gyroscope in modern smartphones are 100% and 48%,
respectively. Due to their seemingly low privacy sensitivity,
mobile OSs do not require the user’s explicit permission for apps’
access, c.f., location information. In fact, the motion sensors
are usually always-on, meaning that even if the user switches
it to operate in the background, the data collection continues.
These features together allow adversaries to collect the motion
sensors data freely and stealthily without the victim’s notice.

B. Motion Sensor as a Vibration Sensor
Modern IMU sensors, often integrated into a compact MEMS

chip in a mobile/wearable device, are capable of quantifying the
device’s angular speed with time-series data. For example, the
MEMS gyroscope measures the angular speed by harvesting the
Coriolis force [7] when the device is rotating. To capture the
Coriolis force, the gyroscope uses a tuning fork configuration [8]
— a built-in fork-shaped mass oscillates at a high frequency.
The design of the MEMS chip has led us to a key observation:
the oscillating mass can be used as a sampler for capturing
the vibration of other objects. Specifically, vibrations can affect
the oscillatory pattern of the moving mass of the MEMS chip,
which manifests itself as motion sensor readings.

C. Implications of Vehicle Characteristics
Vehicles are categorized by their physical configuration, such

as engine- and body-type. In this paper, we will demonstrate
the feasibility of differentiating three major engine types (i.e., 4,
6, and 8-cylinder engines) and four popular and representative
body-types of vehicles (i.e., compact, mid-size, SUV, and
pickup trucks).

The vehicle’s physical characteristics (especially the body-
type) can imply a wide range of personal information, according
to social science research [2], market study [9], and public
perceptions [1]. Hence, the vehicle-characteristics information is
prohibited from public access, e.g., in the US, this information is
maintained by each state’s Department of Motor Vehicles (DMV)
or Secretary of State (SOS). For example, since 4-cylinder
engines are less powerful and have higher miles-per-gallon

Source (engine, wheel) Transmission path (vehicle chassis)

Receiver (malicious app 
eavesdrops IMU data)

Idling vehicle

Moving vehicle

IMU 
data

Targeted 
messages (ads, 
notifications)

Fig. 1. Overview of attack models in VeFi.

(MPG) than 8-cylinder engines, the engine type information
may reflect the vehicle owner’s life style and preference in fuel
consumption. In what follows, we use real-world examples to
show that several unique privacy-sensitive implications can be
inferred from the vehicle-type information.
Spending habit. People’s choice of vehicle has close association
with their spending habit. This observation has already been
monetized by targeted advertising companies [10].
Political preferences. Prior research [11], [12], market
study [9], and surveys [1], [13], [14] indicate that people’s
choice of vehicle may also reflect their political leaning (e.g.,
conservative vs. liberal). Such information is highly sensitive,
even constituting an attractive target for adversaries to influence
people’s voting in an election.
Demographic information. Some specific demographic
information (e.g., gender and education level) also turns out
to be closely associated with people’s choice of vehicle. For
instance, the Gallup survey [14] studied the most frequently
driven cars by Americans. The results indicate a strong correlation
between people’s education level with choice of their cars in the
U.S. — only 39% of the participants with postgraduate education
drive large US-made cars, while about 61% of those drive cars
that are made by foreign companies (e.g., Toyota and BMW).

Even though vehicle characteristics may not be the most
explicit indicator for the aforementioned personal attributes,
with such information from a large group of people, an
adversarial entity may accumulate the side-channel information
to effectively pose a large-scale privacy threat. A notable
example was the Cambridge Analytica scandal [4]. Specifically,
the data analytics company, Cambridge Analytica, managed
to obtain approximately 87 millions Facebook users’ social
network activity data (e.g., Facebook-likes and shares). Based
on this non-explicit information, Cambridge Analytica managed
to infer people’s political tendency, which was then used to
influence the people’ ideology by fabricating fake news and
distributing them to targeted victims. This incident was reported
to have influenced the 2016 US presidential election [15].

III. THREAT MODEL

In VeFi, the victims are the users of a mobility app that
stealthily collects IMU sensor data for vehicle characterization.
We also assume each victim owns and drives a car while using
the app that collects IMU data. This is a reasonable assumption
since the vehicle is one of the most popular personal properties
(e.g., in the U.S., 95% of households own a car, 85% of them
get to work by cars [16]), whereas most smartphones are
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Fig. 2. Illustration of IC engine powertrain [18].

equipped with IMU sensors. We will later justify the use of
smartphones for the detection of a driving event.

As shown in Fig. 1, the attackers can be adversarial entities
that have access to the victim’s driving data, including malicious
app developers who publish smartphone apps that eavesdrop the
IMU data for characterizing the users’ vehicle and/or third-party
data processor who are interested in monetizing the information
of end-users’ vehicles. VeFi enables a practical and large-scale
side-channel privacy leakage attack even for those attackers
with limited resources (i.e., zero-permission IMU data). For
example, if the attacker’s goal is to send targeted ads, s/he only
needs to infer the victim’s vehicle configuration and present
the corresponding ads in the app’s advertising banner.

IV. CHARACTERIZING IDLING VEHICLES

To characterize a vehicle’s vibration pattern, it is essential
to understand internal combustion (IC) engine dynamics and
the vibration induced by the IC engine.

A. Fundamentals of IC Engine

We focus on traditional vehicles with gasoline engines, which
is a subcategory of IC engines. The US Energy Information
Administration reports the share of gasoline-powered vehicles
in 2018 among new sales to be 93%, and predicts the share
of gasoline and flex-fuel vehicles (which use gasoline blended
with up to 85% ethanol) to be 75% in 2050 [17]. As a result,
gasoline engines will remain as the dominant type of propulsion
for the decades to come.
Overview of the IC Engine. To convert the chemical energy
(i.e., from gasoline) to mechanical power, each cylinder of the
IC engine (as shown in Fig. 2) combusts the vaporized fuel to
generate force to move the piston linearly. The linear movement
is then converted to rotational motion of the crankshaft, which
rotates the fly wheel and powers up the vehicle.
Engine Working Cycle. The engine vibration is induced by the
reciprocating working cycle [19] that is adopted in the vast major-
ity of IC engines. Specifically, each engine completes four strokes
(i.e., intake → compression → combustion → exhaust) to turn
the crankshaft a full rotation of 360◦. Note that in one crankshaft
revolution, only a half of the engine cylinders are sparked sequen-
tially. That is, in each revolution, there are C

2 combustions in the
engine, where C is the number of cylinders of the engine. For
example, for a 4-cylinder engine, one revolution generates two
fuel combustions, which are the main cause of engine vibration.
Vibration Frequency of IC Engine. The engine’s vibration
frequency can be inferred from its structure and speed, measured

in revolutions per minute (RPM), or the number of crankshaft
revolutions per minute. Specifically, for the reciprocating IC
engine, we can get the combustion frequency:

fC =
RPM

60
·C

2
(1)

B. Fundamental Frequency Analysis
For a vibrating object, the detected vibrating frequency is

a composite of several frequency components, i.e., fundamental
frequency and harmonics [20]. The fundamental frequency is
the component that has the lowest frequency. Harmonics are
multiples of the fundamental frequency, with lower magnitudes
than the fundamental frequency. For an idling vehicle, the
harmonics induced by the engine can be represented as:

fC,N =N fC (2)
where N is a positive integer, N∈N; fC,n, n≥1 is the nth-order
harmonic; fC,1 is the fundamental frequency. The vibration
that induces fC,n is called nth-order vibration. Note that the
magnitude induced by the 1st -order vibration dominates the
whole-body vibration of an idling vehicle. According to the
survey [21] on the vast majority of IC engine-types (i.e., 4, 6,
and 8-cylinder), the 1st -order vibration contributes to more than
70% of the whole-body vibration of an idling vehicle.

C. Frequency Aliasing
One of the key limitation of gyroscope sensor is its narrow

bandwidth — gyroscope may not have a sufficient sampling rate
to capture the vehicle’s vibration. Specifically, according to the
Shannon-Nyquist Theorem [5], the sampling rate needs to be
at least twice the target’s frequency. That is, given the sampling
rate of the gyroscope as fs, the gyroscope cannot capture fC,N if
fC,N > 1

2 fs. To overcome this problem, we harvest the frequency
aliasing effect for capturing the feature of fC,N . Specifically,
frequency aliasing is the phenomenon that allows the data
sampler to still retrieve the signal’s spectral feature even when
the sampling frequency is lower than the Nyquist frequency
(e.g., 2 fC,N). That is, frequency aliasing allows us to assess
the frequency even when the frequency is beyond 0.5 fs. The
aliased frequency f a of the targeted frequency is a series of
frequency components. That is, the aliased Nth-order harmonics
of a C-cylinder engine can be derived as:

f a
C,N = | fC,N−K · fs|, 0≤ f a

C,N ≤ fs/2 (3)
where K ∈ Z can be any integer. Furthermore, another key
challenge for using the gyroscope sensor is the changing
smartphone posture, e.g., mounted in a phone holder or resides
in the cup holder. This can induce drastically different gyroscope
reading as the raw gyroscope format is a vector of three axis
[Gyroroll , Gyropitch, Gyroyaw]. We calibrate the sensor reading
by multiplying the three-dimensional gyroscope reading with
a rotation matrix as described in [22]. Now, we can obtain
a calibrated one-dimensional gyroscope data which unifies
readings from three axes into the fixed yaw axis.

D. Spectral Features of Engine Vibration
By combining Eqs. (1)–(3), f a

C,N of an IC engine at a specific
engine speed RPM can be expressed as:

f a
C,N(RPM)= | N

60
RPM ·C

2
−K · fs|,0≤ f a

C,N(·)≤ fs/2. (4)
We validated Eq. (4) by analyzing the gyroscope readings

collected from real-world field-tests. We collected data from an
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(b) Inside the car (cup holder)
Fig. 3. The idling engine’s spectrogram obtained by gyroscope sensor sampling
at 100 Hz with the device residing at different locations.

SUV with a 6-cylinder engine (C=6). The sampling frequency
fs of the smartphone’s gyroscope is 100Hz and can thus capture
frequencies up to 50 Hz. Since the engine of this idling vehicle
(also called idle speed) ran at around 880 RPM, the first three har-
monics are f6,1=44 Hz, f6,2=88 Hz, and f6,3=32 Hz according
to Eq. (2). Based on Eq. (4), the aliased frequencies that can be
captured by the smartphone are f a

6,{1,2,3}(880)= {44, 12, 32} Hz.
Fig. 3 validates f a

6,{1,2,3}(880) by showing the spectrogram
(frequency components in different time slots) of the field-test
gyroscope readings. Specifically, to inspect the engine’s vibration
without disturbance induced by other vehicular components (e.g.,
chassis, suspension, etc.), we opened the engine hood and placed
the smartphone directly on the idling vehicle’s engine. Fig. 3(a)
shows three major spectral shapes of the engine vibration in
43 Hz, 32 Hz, and 12 Hz frequency bands, which correspond
to f a

6,{1,2,3}(880). We also emulated the real-world smartphone
usage by putting the smartphone in the cup holder inside of
the cabin. Although the magnitude of vibration is dimmed (as
shown in Fig. 3(b)) due to the propagation from the engine
to the vehicle cabin, one can still interpret the same harmonics
from gyroscope readings. This observation indicates that the
harmonics of an idling vehicle’s engine vibration are stable
despite different placements of the sampler (i.e., the smartphone).

E. Classifying Engines
Based on the harmonic feature, we propose an training-less

approach that only uses a lookup table — i.e., does not require sta-
tistical training — for engine characterization and coarse-grained
vehicle identification. Note that the cylinder count information
can help narrow down the search space of vehicle-types, e.g.,
the majority of heavy-duty pickup trucks use 8-cylinder engines,
while most compact and mid-size cars use 4-cylinder engines.
Building a Lookup Table. We construct a lookup table with
spectral features (i.e., extracted by using Eq. (4)) of different
engine configurations. Specifically, given the idle speed of most
vehicles ranging from 600 to 1000 RPM [23], we can derive
the detectable frequencies (i.e., those that can be captured by
the gyroscope at a 100 Hz sampling rate) of the first three
harmonics of engines for a different number of cylinders as
shown in Fig. 4(a). Note that the fundamental frequency (i.e., the
first harmonic) has the strongest magnitude among all other other
components. We tested this insight by using experimental results
as shown in Figs. 4(b), (c), and (d), where we highlight the first
harmonic of idling engines with different numbers of cylinders.
Determining the Number of Cylinders. Based on the domain
knowledge, an attacker can classify idling engines as follows.
In the first step, the attacker needs to extract the idling engine’s

vibration data. The idling period can be extracted when the
vehicle is stationary, e.g., in parking lots or waiting for traffic
lights at intersections. In the second step, the frequency ranges
of different harmonics can be detected with existing spectral
analysis algorithms. We tested the performance of linear
predictive coding (LPC) [24], a popular spectral analysis in
speech recognition, for extracting the frequency of different
harmonics. Fig. 4(e) depicts the spectrogram of a Toyota Camry
(4-cylinder) engine. We applied LPC on each DFT batch and
overlay detection results on the spectrogram. LPC can accurately
detect the three harmonics with the averaged central frequency at
24.51 Hz, 43.26 Hz, and 16.65 Hz. In the last step, the attacker
can use the lookup table from Fig. 4(a) to match the detected
harmonic feature with the engine configuration. The reasoning
process can be structured into the decision tree in Fig. 5.

It is worth noting that with a higher gyroscope sampling
rate, the frequency ranges overlap less, which can enhance the
classification accuracy.

V. CHARACTERIZING MOVING CARS

A. Vibration Analysis
To tackle the complex vibration pattern while the vehicle

is moving, we analyze the whole-body vibration based on the
source-filter model [25], which has been successfully used for the
analysis of a vehicle’s noise, vibration and harness (NVH) [26].
According to the source-filter model, the generation and transmis-
sion of mechanical vibrations are described as a two-stage process
(Fig. 1). In the first stage, vibrating objects (e.g., engine, tires,
and the turbulence induced by wind) excite vibrations, which then
start propagating into the mechanical body. The vibration of mov-
ing cars can be more intense than that in idling cars. In the second
stage, the body structure (vehicle-body) modulates the vibration
signal in its transmission path. The modulation process produces
structure-borne vibrations at various frequencies. If the frequency
of a vibration is close to the natural frequency of the mechanical
system, it is called the resonant frequency of the mechanical
system. Note that the mechanical system vibrates with stronger
amplitude [27] at the resonant frequency than other signals.

The resonant frequency is one of the key signatures for
characterizing the physical feature of the vibrating object. For
example, the resonant frequency of a person’s speech sound has
the intrinsic feature of the shape of his/her vocal tract which
is used as the unique feature for speaker identification [28].
Likewise, to classify vehicle body-types, the key is to extract
the resonant frequencies from the gyroscope readings.

Based on the above findings, we formulate the classification of
moving vehicles as a machine-learning problem. As shown in the
system pipeline in Fig. 6, the attacker first needs to collect the
IMU data traces. This data collection is an one-time effort — the
attacker can speed up the process by focusing on the collection
of data from the vehicle- types of interest. Next, the data pre-
processing and feature extraction module distill the representative
features that reflect the vehicle’s vibration pattern, which can
subsequently be used for training a statistical model. Next, we
present the design of data pre-processing and feature extraction.

B. Data Pre-processing
As discussed above, the low-frequency components are noisy

and may not be helpful for inferring vehicle-types. The majority
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Harmonic order
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Fig. 4. Characterizing the number of engine cylinders based on harmonic features. (a) shows harmonics (derived from Eq. (4)) of different engines. (b), (c),
and (d) show the first two harmonics’ power spectrums of 4, 6, and 8-cylinder engines, respectively.
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Fig. 6. Pipelined body-type characterization.

of low-frequency vibrations are caused by the driving maneuvers
and suspension vibration, for example, due to rough pavements.
Driving maneuvers like turns and lane-changes normally last for a
few seconds, which create low-frequency signals (≤2 Hz) in the
gyroscope readings, whereas the suspension vibration caused by
rough pavements creates signals of frequency below 5∼7 Hz [29].
So, we use a first-order high-pass filter with the cut-off frequency
of 7 Hz to remove the low-frequency vibration data.

C. Feature Extraction

We extract the spectral feature of vehicle vibration with a sim-
ilar workflow inspired by speaker recognition research. The first
step is to segment the pre-processed data with a sliding window.
Discrete Fourier Transform (DFT) is then used to transform the
time-series data to a spectrum distribution (i.e., DFT coefficients
in the frequency domain). The spectrum will then be filtered by
a series of band-pass filters to extract distinguishable frequency
bands. Finally, we calculate the logarithm and Discrete Cosine
Transform (DCT) sequentially to derive power spectrum coeffi-
cients [28], which form the final feature vector. In what follows,
we introduce the design of the data segmentation and filter banks.

1) Segmentation of Vibration Data: We slice the gyroscope
data trace into short data snippets with a half-overlapped sliding
window. To extract sufficient data for the analysis in each
window, the window length is set to 5 seconds or 500 data
samples ( fs=100 Hz).

2) Design of Filter Banks: Filter banks [30] decouple the
spectral data into different frequency bands by processing
the signal with a series of bandpass filters. For example,
Mel-frequency filter banks (MFCC) [31] have been used to
emulate the human ears’ perception of sound waves (i.e., air
vibration). Here, we use half-overlapped triangular band-pass
filters but with an emphasis on the analysis of the vibration
signal, which has different frequency range and pattern from
the voice signal. To this end, we have designed 15 (i.e., L=15)
filter banks based on [32]. To meet the requirement of vibration
analysis, we tune the frequency span and place triangular filter
banks linearly [33] between the lower bound (7 Hz, as shown in
Sec. V-B) and the Nyquist frequency. Then, for each filter bank’s
output, we calculate the summation and take the logarithm of the
spectral coefficients. Finally, we use DCT to extract the power
spectrum. That is, for each time window, we extract a 1×15
feature vector that reflects the spectral pattern of a data snippet.

D. Classification of Vehicle Types

We apply the thus-derived feature vector on three different
machine learning classifiers: Gaussian Mixture Model (GMM),
Support Vector Machine (SVM), and Random Forest (RF). In
Sec. VII, we will compare the performance of different classifiers.
To emulate real-life attack scenarios, we used a leave-one-out
scheme to construct the training and testing sets. Specifically,
for each vehicle type in Table I, we chose one vehicle’s data
for testing and used the remaining vehicles’ for training. To
avoid an unbalanced dataset, we extracted the same number
of data snippets for the training data of each vehicle body-type.

VI. EXPERIMENTAL SETUP

A. Data Collection App

Our data collection emulates real-world smartphone usage
while driving. Specifically, our implementation emulates a
freemium driving behavior analysis app, a fast-emerging
mobile app category [34], [35] that actively collects users’
motion sensor and location data for analyzing drivers’ behavior
(e.g., speeding and distracted driving) that is essential for
driving-related services and businesses like auto insurance,
transportation regulation, etc. For example, when the app is
running in the foreground, it may show real-time statistics of
the current driving dynamics, e.g., driving behavior detection.
Note that to facilitate continuous sensing, the data collection
and upload functionalities need to be always-on, meaning that
unless the user kills the app completely (e.g., terminate the task
thread), the app collects the data even when it is running in the
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background. To collect the data of moving vehicles, participants
were instructed to run the app during their driving.

The key challenge of the app development is controlling
the overhead — a high workload on the user device may
undermine data collection by exhausting the device’s battery
and/or the user’s data plan. Our data-collection app addresses
this challenge by regulating the data-collection behavior. In
particular, the app samples the gyroscope and accelerometer data
at 100 Hz, as shown in Sec. VII-C, a moderate sampling rate
that does not incur high energy and CPU overheads. According
to our field-test results, the data collection is shown to generate
only 4.6 MB data per hour. To lower the user’s cellular data
consumption and make the app stealthier, the app uploads the
data only when a Wi-Fi connection is available.

Protecting our participants’ privacy is another top priority
of our experiment. To achieve this, we applied our university’s
IRB and received an approval (Registration No. REDACTED).
To ensure our participants are fully aware of the methodology
and purpose of our data collection, the app requires each
participant’s consent — s/he needs to agree to the terms of use
and privacy policy in the consent screen, prior to starting the
data-collection process.

B. Collecting Driving Data
The design and validation of our proposed data analytics

pipeline (Secs. IV and V) are based on the real-world data
collected from field tests. Specifically, we investigated multiple
vehicles of different types, and collected data from 17 different
cars as listed in Table I. We recruited 10 participants (7 males
and 3 females of age ranging from 24 to 58) who use their
vehicle for daily commute. Note that the number of vehicles
is larger than the number of participants since for some
vehicle-types, we also let participants collect data from rental
cars. Two types of Android phones (i.e., Google Pixel and LG
Nexus 5X) were used for the data collection.

We collected data over 3 months in the U.S. including urban,
suburban, and highway environments. The data collection
was conducted between 7:30am to 6:30pm. As a result, the
accumulated driving dataset has 20.4 hours driving time and
1134.9 km driving distance. The last two columns of Table I
denote the travel distance and time for data collection. The
average driving speed of compact car, mid-size, SUV, and
pickup truck were 67.2, 56.6, 47.8, and 65.6 km/h, respectively.

VII. EXPERIMENTAL RESULTS

A. Differentiating Idling Vehicles
We test the proposed idling vehicles classification using test

vehicles of 3 different engine-types. We use eleven 4-cylinder
cars (i.e., all compact vehicles and 5 mid-size vehicles), three
6-cylinder cars (i.e., two Ford Explorer SUVs and Mercedes),
and three 8-cylinder cars (i.e., all pickup trucks). To emulate
real-world smartphone usage in our experiments, smartphones
were either mounted on the windshield or placed in the cup
holder in each vehicle. Since our current evaluation set is
unbalanced, i.e., number of 4-cylinder engine cars is larger than
that of 6- and 8-cylinder vehicles, we report precision, recall,
F-1, and support to assess the performance of VeFi.

Table II shows the performance of our engine-type
classification. Specifically, classification of 6- and 8-cylinder

85.0%

85

14.0%

14

0.0%

0

1.0%

1

0.0%

0

90.0%

90

5.0%

5

5.0%

5

0.0%

0

6.0%

6

83.0%

83

11.0%

11

0.0%

0

14.0%

14

1.0%

1

85.0%

85

1 2 3 4

Actual Vehicle Types

1

2

3

4

P
re

d
ic

te
d
 V

e
h
ic

le
 T

y
p
e
s

(a) Confusion matrix

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Compact

Midsize

SUV

Pickup

Reference line

(b) ROC curves
Fig. 7. Confusion matrix and ROC for differentiating vehicle body-types.

engines has zero false positive detection, whereas classification
of 4-cylinder engines has zero false negative detection. The
main reason for the misclassification of 4-cylinder engines is the
large variation of RPM. That is, a larger range of varying RPM
may push the first formant closer to the classification boundary.

B. Differentiating Moving Vehicles
To evaluate the performance of moving vehicle characterization

in real-world settings, we take a leave-one-out approach (as
stated in Sec. V) for emulating the attacker’s access of users’
data. That is, for each vehicle body-type, we randomly select
one vehicle’s data for testing, while using the remaining vehicles’
data for the statistical modeling. Note that this leave-one-out
approach also ensures the training data to be balanced. We
repeat this experiment 100 times and report the results in the
confusion matrix (see Fig. VII-B(a)). In each iteration, we
segment the data and select 500 data snippets for training each
vehicle’s vibration profile. With the RF classifier, we can achieve
{precision, recall, F-1 score} at {0.85,1.00,0.92} for compact
cars, {0.90,0.73,0.80} for mid-size sedans, {0.83,0.93,0.88}
for SUVs, and {0.85,0.83,0.84} for pickup trucks, respectively.
The overall accuracy is 85.75% based on Fig. VII-B.

To demonstrate VeFi’s performance with a varying threshold,
we also present the ROC curve. To plot the ROC curves for
multi-class classification, for each targeted vehicle body-type,
we represent all other vehicle body-types as negative samples.
Fig. VII-B (b) shows the resulting ROC curves, where the
performance of classifying all vehicle body-types is well above
the reference (random guess). The areas-under-curve (AUCs)
for compact, mid-size, SUV, and pickup truck ROC curves are
0.8886, 0.9135, 0.8497, and 0.9199, respectively.

1) Performance of Different Classifiers: We now compare
the performance of different machine-learning classifiers (i.e.,
RF, SVM, and GMM) under the same experimental settings. We
report the average metrics of four different vehicle body-types
for each classifier.

As shown in Table III, RF has a similar performance as
GMM, and both of these classifiers outperform SVM, possibly
because SVM is intrinsically based on distance, which is
ill-suited for a spectral analysis.

2) Top Features for Vehicle Identification: One of the most
useful byproducts of the RF classifier is the measurement of
importance [36], [37], which is known to be a good metric of as-
sessing the contributions of different variables to the classification.
Specifically, the importance rating of each variable is estimated
by using the Gini index [38] — the higher the rating, the more im-
portant the corresponding variable’s contribution to the classifier.
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Categories Body Type Experimental Vehicle(s) Distance(km) Hours

C-1 Compact 2009 Toyota Corolla, 2008 Hyundai Elantra, 2018 Nissan Sentra 127.7 1.9

C-2 Mid-size
2006 Honda Accord, 2013 Honda Accord,
2010 Toyota Camry, 2011 Toyota Camry,
2018 Ford Fusion, 2016 Mercedes Benz C-Class

401.2 7.1

C-3 SUV 2013 Honda CRV, 2014 Honda CRV, 2014 Jeep Compass,
2011 Ford Explorer, 2016 Ford Explorer 336.9 7.2

C-4 Pickup truck 2015 GMC Sierra, 2016 GMC Sierra, 2017 Ford F-150 269.1 4.1

TABLE I
DATA COLLECTION FOR DESIGNING AND VALIDATING THE VEHICLE CHARACTERIZATION SCHEME.

# cylinder Precision Recall F-1 Support

4 0.73 1 0.84 11
6 1 0.60 0.75 3
8 1 0.75 0.86 3

TABLE II
PERFORMANCE FOR CLASSIFYING IDLING VEHICLES.

Classifier Precision Recall F-1

RF 0.90 0.86 0.88
GMM 0.89 0.81 0.83
SVM 0.67 0.73 0.72

TABLE III
PERFORMANCE OF DIFFERENT CLASSIFIERS.
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In the experiment, we used the central frequency to
differentiate filter banks for the feature extraction, where each
central frequency corresponds to a variable in the feature vector.
We sorted the importance of variables and presented them as a
bar plot. Based on Fig. 8, the top-two most important variables
are derived from 15.3 Hz and 26 Hz frequency bands. This
suggests possible ways of improving the classifier’s performance.
For example, one may highlight the important frequency bands
by increasing the weight of the corresponding filter banks.
C. Overhead on Smartphones

CPU usage. We recorded the CPU usage on Google Pixel
(1.6GHz quad-core CPU) and LG Nexus 5X phones (hexa-core
CPU with four 1.4GHz Cortex-A53 and two 1.8GHz Cortex-A57)
by using the Android Developer Bridge (ADB) shell. To profile
VeFi’s battery overhead, we used Google’s Battery Historian
tool [39], which allows developers to inspect the battery usage of
each app/module from the bug report generated by smartphones.
Note that the average driving time per day in the U.S. is 50.6 min-
utes. Hence, we generate the bug report from smartphones with
50-min usage of the VeFi app. To evaluate the overhead incurred
by sampling and collecting the gyroscope data, we tested the
CPU usage and battery drain with smartphones at three different
sampling frequencies, i.e., 15 Hz, 100 Hz, and 200 Hz. Here,

Model Metric 15 Hz 100 Hz 200 Hz

Pixel CPU usage
Battery consumed

1.31%
0.66%

5.10%
1.30%

11.20%
2.12%

Nexus 5X CPU usage
Battery consumed

1.36%
0.71%

6.02%
1.86%

10.91%
2.80%

TABLE IV
THE AVERAGED CPU AND BATTERY USAGE OF VeFi.

15 Hz IMU sensor sampling rate is the normal rate for many be-
nign smartphone apps (e.g., step counter). 100 Hz is the sampling
rate for enabling VeFi. 200 Hz allows more information, which
is also the highest sampling rate for many smartphone models.

We report the performance in Table IV. By comparing the
metrics between 15 Hz and 100 Hz, the extra CPU and battery
usages on Pixel are 3.79% and 0.64%, respectively, whereas
Nexus 5X shows 4.66% extra CPU usage and 1.15% more
battery consumption. Hence, this marginal increase from 15 Hz
to 100 Hz would be hard for the victims to notice. However,
increasing the sampling rate from 15 Hz to 200 Hz can drain
the victims’ smartphone battery much faster, thus making it
difficult for the attacker to stealthily collect data.

VIII. RELATED WORKS

Privacy Breach via Mobile Sensory Data. Michalvesky et
al. [40] proposed Gyrophone, a scheme for identifying speakers
and reconstructing simple spoken words by harvesting the
gyroscope reading close to the speaker. Roy et al. [41]
proposed VibraPhone, a series of data analytics techniques for
reconstructing photonic information from vibration data induced
by vibrating motors in mobile devices. In essence, the authors
analyzed the changes in IMU readings that are induced by
external disturbances (i.e., sound waves). Dey et al. [42] showed
that the imperfection of the MEMS chip is distinguishable
among mobile devices. Narain et al. [43] analyzed the
location-privacy threat via leakage of smartphone IMU data. To
the best of our knowledge, there does not exist any work that
investigates the feasibility of analyzing the vehicle’s mechanical
vibration and its connection with the vehicle’s physical features.
Vehicle Vibration Analysis. Sun [44] introduced the sensor
fusion of vehicle vibration signals and oil data to monitor vehicle
health. Puchalski [45] investigated a series of statistical models
of using vibration signal for vehicle diagnostics. Komorska [46]
introduced a scheme of using the resonant frequency for
detecting mechanical defects of a vehicle and/or an engine.
Kozhisseri et al. [47] proposed an acoustic feature for identifying
a vehicle. Specifically, the key feature they extracted is the
fundamental frequency of idling engine vibrations. Goksu et
al. [48] analyzed vibro-acoustic data with wavelet decomposition
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to characterize a vehicle engine while the vehicle is moving.
Unlike these prior works, we explore the feasibility of extracting
rich physical features from vehicles based on smartphone IMUs.

IX. CONCLUSION

We have presented VeFi, a novel attack that can characterize
vehicles by only using motion sensor data generated by driving
apps on users’ smartphones. VeFi only uses zero-permission
IMU sensor readings and incurs minimal resource overhead
to the mobile device, enabling a stealthy side-channel attack
with serious privacy implications.
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