LAST MILE NAVIGATION USING SMARTPHONES

Yuanchao Shu, Kang G. Shin, Tian He and Jiming Chen
NAVIGATION

THE ACT OF FINDING THE WAY TO GET TO A PLACE
Yuanchao Shu • Paris, France • September 10, 2015

https://studioartofficial.wordpress.com/2014/08/19/vintage-tuesday-6/
HISTORY OF NAVIGATION

HISTORY OF SPECIAL INSTRUMENTS

English
Sextant and chronometer

Arabs
Magnetic compass and Kamal

Portuguese and Spanish
Mariner's astrolabe and compass
Circumnavigation and mapping

American
Satellite navigation system

Asian
Monsoon winds

Polynesian
Motion of stars, waves
MODERN NAVIGATION SYSTEMS
WORKING PRINCIPLE

Positioning
Mapping
Path Planning
MODERN NAVIGATION SYSTEMS
STATE-OF-THE-ART

• Positioning
 – Outdoor: satellite-based, meter-level positioning accuracy.
 – Indoor: WiFi, geomagnetism, IMU, Bluetooth, FM [Youssef’05, Yoon’13, Xiong’13].

• Mapping
 – We need a map.
 • Satellite mapping, war-driving, floorplan mapping etc.

• Path Planning
 – Extensively studied in robotics and mathematics.

Does this suffice?
LACK OF MAP INFORMATION
BOTTLENECK OF NAVIGATION SYSTEMS

Coverage
Global, rural, indoor

Resolution
Trails, parking lots

Fidelity
Provisional paths

Positioning + + Path Planning = Navigation
LACK OF MAP INFORMATION

BOTTLENECK OF NAVIGATION SYSTEMS

Coverage
Global, rural, indoor

Fidelity
Provisional paths

Resolution
Trails, parking lots

Maps ?

Positioning
Path Planning
Navigation
LAST MILE NAVIGATION PROBLEM

Navigates one to the vicinity of destination tens of miles away, but fails to find a feasible path from there to final destination
• Plug-and-play
• Lightweight
• Smartphone-based
• Last mile navigation

FollowMe
BASIC IDEA OF FOLLOWME

- Exploits “scents/crumbs” left behind by the previous travelers.
BASIC IDEA

OF FOLLOWME

(leader’s) Trace-collection phase

(follower’s) Navigation phase
USE CASES
OF FOLLOWME
DESIGN
Trace Collection & Real-time Navigation
ARCHITECTURE OF FOLLOWME

Trace Collection Module

Reference Trace

Preprocessing
Magnetometer
Step Detector
Accelerometer
Turn Detector
Gyroscope
Level Detector
Barometer
TECHNICAL DESIGN
REFERENCE TRACE CONSTRUCTION

Sensory data
- Geo-magnetic
- Accelerometer
- Gyroscope
- Barometer

Detection results
- Steps
- Turns
- Level changes

Timestamps

Level changes
- Turns
- Steps

Reference trace

Time
ARCHITECTURE OF FOLLOWME

Navigation Module

- Walking Progress Estimator
- Deviation Detector
- Nav. Instructions

Reference Trace

Trace Collection Module

- Preprocessing
- Step Detector
- Turn Detector
- Level Detector
- Magnetometer
- Accelerometer
- Gyroscope
- Barometer

Yuanchao Shu • Paris, France • September 10, 2015
ARCHITECTURE
OF FOLLOWME

Walking Progress Estimator → Deviation Detector → Nav. Instructions

Navigation Module

Reference Trace

Preprocessing
Step Detector
Magnetometer
Accelerometer

Trace Collection Module

Turn Detector
Level Detector
Gyroscope
Barometer
A NAVIGATION EXAMPLE
TECHNICAL DESIGN
WALKING PROGRESS ESTIMATION

- Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)

Given \(S_a = S_a[i], i = 1, \ldots, L_a \) and \(S_b = S_b[i], i = 1, \ldots, L_b \),

DTW aims to find a monotonic mapping function \(f : I[1, L_a] \to I[1, L_b] \) between \(S_a \) and \(S_b \) such that

\[
\text{minimize: } \sum_{i=1}^{L_a} (S_a[i] - S_b[f(i)])^2
\]

where \(I[1, L_a] \) is the integers from 1 to \(L_a \).
TECHNICAL DESIGN
WALKING PROGRESS ESTIMATION

• Step-constrained trace synchronization algorithm
 – Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 – Sync. based on legacy dynamic time warping (DTW)
 • Full knowledge of traces
 • Quadratic computational complexity
 – Online DTW with linear computation overhead

\[D[i][j] = \min(D[i-1][j-1], D[i-1][j], D[i][j-1]) + \text{dist}(i, j) \]
TECHNICAL DESIGN
WALKING PROGRESS ESTIMATION

• Step-constrained trace synchronization algorithm
 – Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 – Sync. based on legacy dynamic time warping (DTW)
 • Full knowledge of traces
 • Quadratic computational complexity
 – Online DTW with linear computation overhead
 • Step-constrained search space
 \[
 \text{If } < m_i > \in < s_j > \rightarrow < \hat{m}_i > \in < \hat{s}_j >, \text{ and } < m_{i+1} > \in < s_k > \\
 \rightarrow < \hat{m}_i > \in < \hat{s}_j >, \text{ then } |(\hat{s}_j - \hat{s}_i) - (s_k - s_j)| > c
 \]
 • Dynamically changing search band
• Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)
 • Full knowledge of traces
 • Quadratic computational complexity
 - Online DTW with linear computation overhead
 • Step-constrained search space
 \[\text{If } < m_i, s_j > \rightarrow < \hat{m}_i, \hat{s}_j >, \text{ and } < m_{i+1}, s_k > \]
 \[\rightarrow < \hat{m}_i', \hat{s}_j', >, \text{ then } |(\hat{s}_j' - \hat{s}_j) - (s_k - s_j)| > c \]
 • Dynamically changing search band
IMPLEMENTATION AND EVALUATION

• Implementation
 – Android 4.4.2, Samsung Galaxy S5
 – Two threads
 • Data collection: 50Hz
 • Signal processing
 – DTW buffer size: 12s (c = 600)

• Evaluation
 – Four-story campus building
 – 5 participants
 – 10 different reference traces
EVALUATION
NAVIGATION ACCURACY

CDF of spatial error in navigation

Spatial error (m)

FollowMe
Geomagnetism, with PF
WiFi, with PF
EVALUATION
NAVIGATION ACCURACY

Lead time of navigation instructions at different checkpoints

- **Checkpoint A**
- **Checkpoint B**
- **Checkpoint C**
- **Checkpoint D**

- User A
- User B
- User C
- User D
RELATED WORK

Robotics
Special hardware-based nav.
[Cho’10, Bonin’08]
Complicated humans’ locomotion;
Limited energy buffer of smartphones.

Geo-magnetic
Anomalies-based local. and nav.
[Glazner’10, Gozik’11, Chung’11, Grand’12],
Ubiquitous and stable;
Localization-based navigation (map?);
Tedious fingerprint collection.

Smartphone
Nav. with or w/o infrastructure
[Li’12, Chintalapudi,’10, Rai’12, Xiong’13,
Yang’12, Chen’12]
Accumulative error and usage-dependent;
Non-universal (e.g., GPS, WiFi);
High bootstrap effort of fingerprinting.

Leader-follower
Trace-based nav.
[Constandache’10, Riehle’12, Zheng’14]
Customized devices (e.g., robots);
Infrastructure-dependent (e.g., WiFi, beacons);
Constraints imposed on users.
CONCLUDING REMARKS

INFRASTRUCTURE FREE
Cloud-based or Ad-hoc
No need of floor plans (maps)
WiFi/Bluetooth-independent

HIGH EFFICIENCY
Low-power sensors
Low computation
Energy efficient

MINI. USER INVOLVEMENT
Plug-and-play
Fast and easy bootstrapping
No action required during NAV
More info. and updates

FollowMe
THANK YOU

Q&A